Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Performance Evaluation of Multi-Agent Reinforcement Learning Algorithms

    Abdulghani M. Abdulghani, Mokhles M. Abdulghani, Wilbur L. Walters, Khalid H. Abed*

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 337-352, 2024, DOI:10.32604/iasc.2024.047017

    Abstract Multi-Agent Reinforcement Learning (MARL) has proven to be successful in cooperative assignments. MARL is used to investigate how autonomous agents with the same interests can connect and act in one team. MARL cooperation scenarios are explored in recreational cooperative augmented reality environments, as well as real-world scenarios in robotics. In this paper, we explore the realm of MARL and its potential applications in cooperative assignments. Our focus is on developing a multi-agent system that can collaborate to attack or defend against enemies and achieve victory with minimal damage. To accomplish this, we utilize the StarCraft… More >

  • Open Access

    ARTICLE

    DeepSVDNet: A Deep Learning-Based Approach for Detecting and Classifying Vision-Threatening Diabetic Retinopathy in Retinal Fundus Images

    Anas Bilal1, Azhar Imran2, Talha Imtiaz Baig3,4, Xiaowen Liu1,*, Haixia Long1, Abdulkareem Alzahrani5, Muhammad Shafiq6

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 511-528, 2024, DOI:10.32604/csse.2023.039672

    Abstract Artificial Intelligence (AI) is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy (VTDR), which is a leading cause of visual impairment and blindness worldwide. However, previous automated VTDR detection methods have mainly relied on manual feature extraction and classification, leading to errors. This paper proposes a novel VTDR detection and classification model that combines different models through majority voting. Our proposed methodology involves preprocessing, data augmentation, feature extraction, and classification stages. We use a hybrid convolutional neural network-singular value decomposition (CNN-SVD) model for feature extraction and selection and an improved SVM-RBF with a Decision Tree More >

Displaying 1-10 on page 1 of 2. Per Page