Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    LKMT: Linguistics Knowledge-Driven Multi-Task Neural Machine Translation for Urdu and English

    Muhammad Naeem Ul Hassan1,2, Zhengtao Yu1,2,*, Jian Wang1,2, Ying Li1,2, Shengxiang Gao1,2, Shuwan Yang1,2, Cunli Mao1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 951-969, 2024, DOI:10.32604/cmc.2024.054673 - 15 October 2024

    Abstract Thanks to the strong representation capability of pre-trained language models, supervised machine translation models have achieved outstanding performance. However, the performances of these models drop sharply when the scale of the parallel training corpus is limited. Considering the pre-trained language model has a strong ability for monolingual representation, it is the key challenge for machine translation to construct the in-depth relationship between the source and target language by injecting the lexical and syntactic information into pre-trained language models. To alleviate the dependence on the parallel corpus, we propose a Linguistics Knowledge-Driven Multi-Task (LKMT) approach to… More >

  • Open Access

    ARTICLE

    Enhancing Communication Accessibility: UrSL-CNN Approach to Urdu Sign Language Translation for Hearing-Impaired Individuals

    Khushal Das1, Fazeel Abid2, Jawad Rasheed3,4,*, Kamlish5, Tunc Asuroglu6,*, Shtwai Alsubai7, Safeeullah Soomro8

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 689-711, 2024, DOI:10.32604/cmes.2024.051335 - 20 August 2024

    Abstract Deaf people or people facing hearing issues can communicate using sign language (SL), a visual language. Many works based on rich source language have been proposed; however, the work using poor resource language is still lacking. Unlike other SLs, the visuals of the Urdu Language are different. This study presents a novel approach to translating Urdu sign language (UrSL) using the UrSL-CNN model, a convolutional neural network (CNN) architecture specifically designed for this purpose. Unlike existing works that primarily focus on languages with rich resources, this study addresses the challenge of translating a sign language… More >

  • Open Access

    ARTICLE

    ABMRF: An Ensemble Model for Author Profiling Based on Stylistic Features Using Roman Urdu

    Aiman1, Muhammad Arshad1, Bilal Khan1, Khalil Khan2, Ali Mustafa Qamar3,*, Rehan Ullah Khan4

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 301-317, 2024, DOI:10.32604/iasc.2024.045402 - 21 May 2024

    Abstract This study explores the area of Author Profiling (AP) and its importance in several industries, including forensics, security, marketing, and education. A key component of AP is the extraction of useful information from text, with an emphasis on the writers’ ages and genders. To improve the accuracy of AP tasks, the study develops an ensemble model dubbed ABMRF that combines AdaBoostM1 (ABM1) and Random Forest (RF). The work uses an extensive technique that involves text message dataset pretreatment, model training, and assessment. To evaluate the effectiveness of several machine learning (ML) algorithms in classifying age… More >

  • Open Access

    ARTICLE

    Sentiment Analysis of Low-Resource Language Literature Using Data Processing and Deep Learning

    Aizaz Ali1, Maqbool Khan1,2, Khalil Khan3, Rehan Ullah Khan4, Abdulrahman Aloraini4,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 713-733, 2024, DOI:10.32604/cmc.2024.048712 - 25 April 2024

    Abstract Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understanding public opinion and user sentiment across diverse languages. While numerous scholars conduct sentiment analysis in widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grappling with resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language, characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu, Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguistic features,… More >

  • Open Access

    ARTICLE

    RUSAS: Roman Urdu Sentiment Analysis System

    Kazim Jawad1, Muhammad Ahmad2, Majdah Alvi3, Muhammad Bux Alvi3,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1463-1480, 2024, DOI:10.32604/cmc.2024.047466 - 25 April 2024

    Abstract Sentiment analysis, the meta field of Natural Language Processing (NLP), attempts to analyze and identify the sentiments in the opinionated text data. People share their judgments, reactions, and feedback on the internet using various languages. Urdu is one of them, and it is frequently used worldwide. Urdu-speaking people prefer to communicate on social media in Roman Urdu (RU), an English scripting style with the Urdu language dialect. Researchers have developed versatile lexical resources for features-rich comprehensive languages, but limited linguistic resources are available to facilitate the sentiment classification of Roman Urdu. This effort encompasses extracting… More >

  • Open Access

    ARTICLE

    Neural Machine Translation Models with Attention-Based Dropout Layer

    Huma Israr1,*, Safdar Abbas Khan1, Muhammad Ali Tahir1, Muhammad Khuram Shahzad1, Muneer Ahmad1, Jasni Mohamad Zain2,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2981-3009, 2023, DOI:10.32604/cmc.2023.035814 - 31 March 2023

    Abstract In bilingual translation, attention-based Neural Machine Translation (NMT) models are used to achieve synchrony between input and output sequences and the notion of alignment. NMT model has obtained state-of-the-art performance for several language pairs. However, there has been little work exploring useful architectures for Urdu-to-English machine translation. We conducted extensive Urdu-to-English translation experiments using Long short-term memory (LSTM)/Bidirectional recurrent neural networks (Bi-RNN)/Statistical recurrent unit (SRU)/Gated recurrent unit (GRU)/Convolutional neural network (CNN) and Transformer. Experimental results show that Bi-RNN and LSTM with attention mechanism trained iteratively, with a scalable data set, make precise predictions on unseen… More >

  • Open Access

    ARTICLE

    Translation of English Language into Urdu Language Using LSTM Model

    Sajadul Hassan Kumhar1, Syed Immamul Ansarullah2, Akber Abid Gardezi3, Shafiq Ahmad4, Abdelaty Edrees Sayed4, Muhammad Shafiq5,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3899-3912, 2023, DOI:10.32604/cmc.2023.032290 - 31 October 2022

    Abstract English to Urdu machine translation is still in its beginning and lacks simple translation methods to provide motivating and adequate English to Urdu translation. In order to make knowledge available to the masses, there should be mechanisms and tools in place to make things understandable by translating from source language to target language in an automated fashion. Machine translation has achieved this goal with encouraging results. When decoding the source text into the target language, the translator checks all the characteristics of the text. To achieve machine translation, rule-based, computational, hybrid and neural machine translation… More >

  • Open Access

    ARTICLE

    Recognition of Urdu Handwritten Alphabet Using Convolutional Neural Network (CNN)

    Gulzar Ahmed1, Tahir Alyas2, Muhammad Waseem Iqbal3,*, Muhammad Usman Ashraf4, Ahmed Mohammed Alghamdi5, Adel A. Bahaddad6, Khalid Ali Almarhabi7

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2967-2984, 2022, DOI:10.32604/cmc.2022.029314 - 16 June 2022

    Abstract Handwritten character recognition systems are used in every field of life nowadays, including shopping malls, banks, educational institutes, etc. Urdu is the national language of Pakistan, and it is the fourth spoken language in the world. However, it is still challenging to recognize Urdu handwritten characters owing to their cursive nature. Our paper presents a Convolutional Neural Networks (CNN) model to recognize Urdu handwritten alphabet recognition (UHAR) offline and online characters. Our research contributes an Urdu handwritten dataset (aka UHDS) to empower future works in this field. For offline systems, optical readers are used for… More >

  • Open Access

    ARTICLE

    Sentiment Analysis of Roman Urdu on E-Commerce Reviews Using Machine Learning

    Bilal Chandio1, Asadullah Shaikh2, Maheen Bakhtyar1, Mesfer Alrizq2, Junaid Baber1, Adel Sulaiman2,*, Adel Rajab2, Waheed Noor3

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1263-1287, 2022, DOI:10.32604/cmes.2022.019535 - 19 April 2022

    Abstract Sentiment analysis task has widely been studied for various languages such as English and French. However, Roman Urdu sentiment analysis yet requires more attention from peer-researchers due to the lack of Off-the-Shelf Natural Language Processing (NLP) solutions. The primary objective of this study is to investigate the diverse machine learning methods for the sentiment analysis of Roman Urdu data which is very informal in nature and needs to be lexically normalized. To mitigate this challenge, we propose a fine-tuned Support Vector Machine (SVM) powered by Roman Urdu Stemmer. In our proposed scheme, the corpus data… More >

  • Open Access

    ARTICLE

    Deep Learning and Machine Learning-Based Model for Conversational Sentiment Classification

    Sami Ullah1, Muhammad Ramzan Talib1,*, Toqir A. Rana2,3, Muhammad Kashif Hanif1, Muhammad Awais4

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2323-2339, 2022, DOI:10.32604/cmc.2022.025543 - 29 March 2022

    Abstract In the current era of the internet, people use online media for conversation, discussion, chatting, and other similar purposes. Analysis of such material where more than one person is involved has a spate challenge as compared to other text analysis tasks. There are several approaches to identify users’ emotions from the conversational text for the English language, however regional or low resource languages have been neglected. The Urdu language is one of them and despite being used by millions of users across the globe, with the best of our knowledge there exists no work on… More >

Displaying 1-10 on page 1 of 15. Per Page