Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Nighttime Intelligent UAV-Based Vehicle Detection and Classification Using YOLOv10 and Swin Transformer

    Abdulwahab Alazeb1, Muhammad Hanzla2, Naif Al Mudawi1,*, Mohammed Alshehri1, Haifa F. Alhasson3, Dina Abdulaziz AlHammadi4, Ahmad Jalal2,5

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4677-4697, 2025, DOI:10.32604/cmc.2025.065899 - 30 July 2025

    Abstract Unmanned Aerial Vehicles (UAVs) have become indispensable for intelligent traffic monitoring, particularly in low-light conditions, where traditional surveillance systems struggle. This study presents a novel deep learning-based framework for nighttime aerial vehicle detection and classification that addresses critical challenges of poor illumination, noise, and occlusions. Our pipeline integrates MSRCR enhancement with OPTICS segmentation to overcome low-light challenges, while YOLOv10 enables accurate vehicle localization. The framework employs GLOH and Dense-SIFT for discriminative feature extraction, optimized using the Whale Optimization Algorithm to enhance classification performance. A Swin Transformer-based classifier provides the final categorization, leveraging hierarchical attention mechanisms More >

  • Open Access

    ARTICLE

    Remote Sensing Imagery for Multi-Stage Vehicle Detection and Classification via YOLOv9 and Deep Learner

    Naif Al Mudawi1,*, Muhammad Hanzla2, Abdulwahab Alazeb1, Mohammed Alshehri1, Haifa F. Alhasson3, Dina Abdulaziz AlHammadi4, Ahmad Jalal2,5

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4491-4509, 2025, DOI:10.32604/cmc.2025.065490 - 30 July 2025

    Abstract Unmanned Aerial Vehicles (UAVs) are increasingly employed in traffic surveillance, urban planning, and infrastructure monitoring due to their cost-effectiveness, flexibility, and high-resolution imaging. However, vehicle detection and classification in aerial imagery remain challenging due to scale variations from fluctuating UAV altitudes, frequent occlusions in dense traffic, and environmental noise, such as shadows and lighting inconsistencies. Traditional methods, including sliding-window searches and shallow learning techniques, struggle with computational inefficiency and robustness under dynamic conditions. To address these limitations, this study proposes a six-stage hierarchical framework integrating radiometric calibration, deep learning, and classical feature engineering. The workflow… More >

  • Open Access

    ARTICLE

    Road Traffic Monitoring from Aerial Images Using Template Matching and Invariant Features

    Asifa Mehmood Qureshi1, Naif Al Mudawi2, Mohammed Alonazi3, Samia Allaoua Chelloug4, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3683-3701, 2024, DOI:10.32604/cmc.2024.043611 - 26 March 2024

    Abstract Road traffic monitoring is an imperative topic widely discussed among researchers. Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides. However, aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area. To this end, different models have shown the ability to recognize and track vehicles. However, these methods are not mature enough to produce accurate results in complex road scenes. Therefore, this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with… More >

Displaying 1-10 on page 1 of 3. Per Page