Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    A Novel Intrusion Detection Model of Unknown Attacks Using Convolutional Neural Networks

    Abdullah Alsaleh1,2,*

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 431-449, 2024, DOI:10.32604/csse.2023.043107 - 19 March 2024

    Abstract With the increasing number of connected devices in the Internet of Things (IoT) era, the number of intrusions is also increasing. An intrusion detection system (IDS) is a secondary intelligent system for monitoring, detecting and alerting against malicious activity. IDS is important in developing advanced security models. This study reviews the importance of various techniques, tools, and methods used in IoT detection and/or prevention systems. Specifically, it focuses on machine learning (ML) and deep learning (DL) techniques for IDS. This paper proposes an accurate intrusion detection model to detect traditional and new attacks on the… More >

  • Open Access

    ARTICLE

    Unknown DDoS Attack Detection with Fuzzy C-Means Clustering and Spatial Location Constraint Prototype Loss

    Thanh-Lam Nguyen1, Hao Kao1, Thanh-Tuan Nguyen2, Mong-Fong Horng1,*, Chin-Shiuh Shieh1,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2181-2205, 2024, DOI:10.32604/cmc.2024.047387 - 27 February 2024

    Abstract Since its inception, the Internet has been rapidly evolving. With the advancement of science and technology and the explosive growth of the population, the demand for the Internet has been on the rise. Many applications in education, healthcare, entertainment, science, and more are being increasingly deployed based on the internet. Concurrently, malicious threats on the internet are on the rise as well. Distributed Denial of Service (DDoS) attacks are among the most common and dangerous threats on the internet today. The scale and complexity of DDoS attacks are constantly growing. Intrusion Detection Systems (IDS) have… More >

  • Open Access

    ARTICLE

    Intrusion Detection Method Based on Active Incremental Learning in Industrial Internet of Things Environment

    Zeyong Sun1, Guo Ran2, Zilong Jin1,3,*

    Journal on Internet of Things, Vol.4, No.2, pp. 99-111, 2022, DOI:10.32604/jiot.2022.037416 - 28 March 2023

    Abstract Intrusion detection is a hot field in the direction of network security. Classical intrusion detection systems are usually based on supervised machine learning models. These offline-trained models usually have better performance in the initial stages of system construction. However, due to the diversity and rapid development of intrusion techniques, the trained models are often difficult to detect new attacks. In addition, very little noisy data in the training process often has a considerable impact on the performance of the intrusion detection system. This paper proposes an intrusion detection system based on active incremental learning with… More >

  • Open Access

    ARTICLE

    Unknown Attack Detection: Combining Relabeling and Hybrid Intrusion Detection

    Gun-Yoon Shin1, Dong-Wook Kim1, Sang-Soo Kim2, Myung-Mook Han3,*

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3289-3303, 2021, DOI:10.32604/cmc.2021.017502 - 06 May 2021

    Abstract Detection of unknown attacks like a zero-day attack is a research field that has long been studied. Recently, advances in Machine Learning (ML) and Artificial Intelligence (AI) have led to the emergence of many kinds of attack-generation tools developed using these technologies to evade detection skillfully. Anomaly detection and misuse detection are the most commonly used techniques for detecting intrusion by unknown attacks. Although anomaly detection is adequate for detecting unknown attacks, its disadvantage is the possibility of high false alarms. Misuse detection has low false alarms; its limitation is that it can detect only… More >

Displaying 1-10 on page 1 of 4. Per Page