Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    PROCEEDINGS

    Fluid-Structure Interaction Model for Analysis Underwater Explosion Structural Damage Based on BDIM

    Biao Wang1, Yuxiang Peng1,*, Wenhua Xu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012061

    Abstract The damage process of ship structures under near-field underwater explosions involves strong nonlinear coupling effects of multiple media, and its numerical simulation poses a serious challenge to traditional numerical algorithms. Based on previous research, this article first establishes a highly compressible multiphase flow numerical calculation model based on the high-precision Discontinuous Galerkin Method (DGM) and a ship elastic-plastic damage dynamic model based on the meshless Reproducing Kernel Particle Method (RKPM). Furthermore, we develop an algorithm for grid-independent dynamic expansion of cracks. Based on this, the Boundary Data Immersion Method (BDIM) is used to couple the More >

  • Open Access

    PROCEEDINGS

    Simulation of Underwater Explosion Shock Wave Propagation in Heterogeneous Fluid Field

    Yuntao Lei1, Wenbin Wu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011365

    Abstract The underwater explosion could cause the serious damage to the naval ships. Investigating the underwater explosion problem is crucial for the development of marine military power. During the recent years, the underwater explosion dynamics in the homogeneous fluid field has been investigated by lots of researchers. However, there often exist sound speed thermoclines in the real ocean environment, which leads to a more complex fluid environment than the homogeneous fluid. The corresponding numerical calculations become more complicated. In order to fully understand the underwater explosion dynamics in the real ocean environment, we perform the numerical… More >

  • Open Access

    PROCEEDINGS

    Far-Field Underwater Explosion Shock Wave Propagation Simulation Using the Three Dimensional Discontinuous Galerkin Method

    Zhaoxu Lian1,Wenbin Wu2,*, Moubin Liu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011054

    Abstract The underwater explosion (UNDEX) could cause the fatal damage of naval ships and submarines in the naval battle, and seriously threaten their combat capability [1]. The UNDEX process is very complicated, including the propagation and reflection of the shock wave, formation and collapse of cavitation zone, trainset dynamic structural response and so on [2]. In this paper, we develop the three-dimensional Discontinuous Galerkin method (DGM) model for simulating the propagation of incident shock loading in fluid domain. The pressure cutoff model is employed to deal with the cavitation effect due to the reflection of the More >

  • Open Access

    ARTICLE

    The Influence of Various Structure Surface Boundary Conditions on Pressure Characteristics of Underwater Explosion

    Yezhi Qin, Ying Wang, Zhikai Wang*, Xiongliang Yao

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.3, pp. 1093-1123, 2021, DOI:10.32604/cmes.2021.012969 - 19 February 2021

    Abstract The shock wave of the underwater explosion can cause severe damage to the ship structure. The propagation characteristics of shock waves near the structure surface are complex, involving lots of complex phenomena such as reflection, transmission, diffraction, and cavitation. However, different structure surface boundaries have a significant effect on the propagation characteristics of pressure. This paper focuses on investigating the behavior of shock wave propagation and cavitation from underwater explosions near various structure surfaces. A coupled Runge–Kutta discontinuous Galerkin (RKDG) and finite element method (FEM) is utilized to solve the problem of the complex waves… More >

  • Open Access

    ARTICLE

    Dynamic Response of Floating Body Subjected to Underwater Explosion Bubble and Generated Waves with 2D Numerical Model

    Zhaoli Tian1,2, Yunlong Liu1,2,*, Shiping Wang1, A Man Zhang1, Youwei Kang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.2, pp. 397-423, 2019, DOI:10.31614/cmes.2019.04419

    Abstract The low frequency load of an underwater explosion bubble and the generated waves can cause significant rigid motion of a ship that threaten its stability. In order to study the fluid-structure interaction qualitatively, a two-dimensional underwater explosion bubble dynamics model, based on the potential flow theory, is established with a double-vortex model for the doubly connected bubble dynamics simulation, and the bubble shows similar dynamics to that in 3-dimensional domain. A fully nonlinear fluid-structure interaction model is established considering the rigid motion of the floating body using the mode-decomposition method. Convergence test of the model… More >

  • Open Access

    ARTICLE

    Centrifuge Model Tests and Numerical Simulations of the Impact of Underwater Explosion on an Air-Backed Steel Plate

    Zhijie Huang1,2,3, Zuyu Chen1,2,3, Xiaodan Ren4,*, Jing Hu3, Xuedong Zhang3, Lu Hai4

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.1, pp. 139-155, 2019, DOI:10.31614/cmes.2019.04596

    Abstract Damage and threats to hydraulic and submarine structures by underwater explosions (UNDEXs) have raised much attention. The centrifuge model test, compared to prototype test, is a more promising way to examine the problem while reducing cost and satisfying the similitude requirements of both Mach and Froude numbers simultaneously. This study used a systematic approach employing centrifuge model tests and numerical simulations to investigate the effects of UNDEXs on an air-backed steel plate. Nineteen methodical centrifuge tests of UNDEXs were conducted. The shock wave pressure, bubble oscillation pressure, acceleration and the strain of the air-backed steel More >

Displaying 1-10 on page 1 of 6. Per Page