Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Experiments and Analyses on Heat Transfer Characteristics from a Solid Wall to a Strip-Shaped Wick Structure

    Kenta Hashimoto1, Guohui Sun1, Yasushi Koito2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 687-702, 2024, DOI:10.32604/fhmt.2024.052928 - 11 July 2024

    Abstract Centered or striped wick structures have been used to develop ultrathin heat pipes. Differing from traditional heat pipes, the centered or striped wick structures leave noncontact container surfaces with the wick structure. In this study, experiments and numerical analyses were conducted to investigate the influence of these noncontact surfaces. In the experiments, a strip-shaped wick structure was placed vertically, the top was sandwiched between wider rods and the bottom was immersed in a working fluid. The rod width was greater than the wick width; thus, noncontact surfaces were left between the rod and the wick… More >

  • Open Access

    ARTICLE

    Numerical Investigations on Fluid Flow and Heat Transfer Characteristics of an Ultra-Thin Heat Pipe with Separated Wick Structures

    Yasushi Koito1,*, Akira Fukushima2

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 869-887, 2024, DOI:10.32604/fhmt.2024.050910 - 11 July 2024

    Abstract Thermal and fluid-flow characteristics were numerically analyzed for ultra-thin heat pipes. Many studies have been conducted for ultra-thin heat pipes with a centered wick structure, but this study focused on separated wick structures to increase the evaporation/condensation surface areas within the heat pipe and to reduce the concentration of heat flux within the wick structure. A mathematical heat-pipe model was made in the three-dimensional coordinate system, and the model consisted of three regions: a vapor channel, liquid-wick, and container wall regions. The conservation equations for mass, momentum, and energy were solved numerically with boundary conditions… More >

  • Open Access

    ARTICLE

    Evaporation Heat Transfer Characteristics from a Sintered Powder Wick Structure Sandwiched between Two Solid Walls

    Yasushi Koito1,*, Shoma Hitotsuya2, Takamitsu Takayama2, Kenta Hashimoto2

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 33-46, 2023, DOI:10.32604/fhmt.2023.041829 - 30 November 2023

    Abstract An ultra-thin flattened heat pipe has been developed with a centered wick structure. This structure is essential to make the heat pipe thinner. However, the centered wick structure reduces the evaporation and condensation surface areas of the wick structure because it is sandwiched between heat pipe walls. In this study, because detailed discussion has not been made, heat transfer experiments were conducted for the wick structure sandwiched between two solid walls. This study focused on the evaporation heat transfer characteristics from the sandwiched wick structure. The experiments were conducted with three wick structures, that is,… More >

  • Open Access

    ARTICLE

    NUMERICAL ANALYSES ON VAPOR TEMPERATURE DROP IN AN ULTRA-THIN HEAT PIPE WITH A THIN WICK SHEET

    Yasushi Koito*

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-6, 2021, DOI:10.5098/hmt.16.8

    Abstract Numerical analyses were conducted for an ultra-thin heat pipe in which a thin wick layer was placed on the bottom. The vapor temperature drop caused by vapor flow friction was discussed for two types of the ultra-thin heat pipes with small and large widths. The numerical results were compared with those obtained for an ultra-thin heat pipe with a centered-wick structure. It was confirmed that the vapor temperature drop was reduced effectively by increasing the width of the heat pipe. Therefore, a wider ultra-thin heat pipe, that is, an ultra-thin vapor chamber is a promising More >

  • Open Access

    ARTICLE

    A NUMERICAL ANALYSIS ON THE EFFECT OF DEVIATION FROM A CENTERED WICK STRUCTURE IN AN ULTRA-THIN FLATTENED HEAT PIPE

    Yasushi Koitoa,*

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-7, 2021, DOI:10.5098/hmt.16.1

    Abstract For ultra-thin heat pipes, a centered wick structure is often used. In this study, a numerical analysis is performed on an ultra-thin heat pipe in which the wick structure’s position has deviated from the center. A 3D heat pipe model, developed by the author in a previous study, is extended, and numerical calculations are conducted to determine any differences in performance because of an off-center wick. The major findings are as follows: (1) a completely centered wick structure is recommended for optimum performance; (2) accurate central positioning of the wick structure is important in the More >

  • Open Access

    ARTICLE

    NUMERICAL ANALYSES ON VAPOR PRESSURE DROP IN A CENTERED-WICK ULTRA-THIN HEAT PIPE

    Yasushi Koitoa,*

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-6, 2019, DOI:10.5098/hmt.13.26

    Abstract This paper describes extended numerical analyses on vapor pressure distribution in a centered-wick ultra-thin heat pipe. Analyses were conducted by using a three-dimensional model developed by the author. Numerical results were obtained changing design parameters and operating conditions of the heat pipe. Discussion was made on the heat transfer limit as well as the vapor pressure drop. Moreover, a simple method was also presented to evaluate the vapor pressure drop in the ultra-thin heat pipe. Calculated results with the simple method agreed in 10 % with the three-dimensional numerical results. More >

Displaying 1-10 on page 1 of 6. Per Page