Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Effect of Shrinkage Reducing Agent and Steel Fiber on the Fluidity and Cracking Performance of Ultra-High Performance Concrete

    Yong Wan1, Li Li1, Jiaxin Zou1, Hucheng Xiao2, Mengdi Zhu2, Ying Su2, Jin Yang2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 1941-1956, 2024, DOI:10.32604/fdmp.2024.053910

    Abstract Due to the low water-cement ratio of ultra-high-performance concrete (UHPC), fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete. In this study, the effects of different types of cementitious materials, chemical shrinkage-reducing agents (SRA) and steel fiber (SF) were assessed. Compared with M2-UHPC and M3-UHPC, M1-UHPC was found to have better fluidity and shrinkage cracking performance. Moreover, different SRA incorporation methods, dosage and different SF types and aspect ratios were implemented. The incorporation of SRA and SF led to a decrease in the fluidity of UHPC. SRA More >

  • Open Access

    ARTICLE

    The Influence of CO Cured Manganese Slag on the Performance and Mechanical Properties of Ultra-High Performance Concrete

    Ligai Bai, Guihua Yang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1717-1730, 2024, DOI:10.32604/fdmp.2024.051506

    Abstract The presence of toxic elements in manganese slag (MSG) poses a threat to the environment due to potential pollution. Utilizing CO curing on MS offers a promising approach to immobilize toxic substances within this material, thereby mitigating their release into the natural surroundings. This study investigates the impact of CO cured MS on various rheological parameters, including slump flow, plastic viscosity (η), and yield shear stress (τ). Additionally, it assesses flexural and compressive strengths (f and f), drying shrinkage rates (DSR), durability indicators (chloride ion migration coefficient (CMC), carbonization depth (CD)), and the leaching behavior of heavy… More >

Displaying 1-10 on page 1 of 2. Per Page