Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Structural Performance of Precast and Cast-in-situ Ultra High Strength Concrete Sandwich Panel

    A. Ramach,ra Murthy1,2, V. Ramesh Kumar1, Smitha Gopinath1, PrabhatRanjan Prem1, Nagesh R. Iyer3, Reshmi Balakrishnan4

    CMC-Computers, Materials & Continua, Vol.44, No.1, pp. 59-72, 2014, DOI:10.3970/cmc.2014.044.059

    Abstract This paper investigates the flexural performance of a sandwich panel made up of ultra high strength concrete (UHSC) as top and bottom skin and cold formed steel as sandwich. A novel sandwich panel has been designed such a way that bottom skin of UHSC is of precast in nature and top skin of UHSC is cast-insitu and cold formed steel (profiled sheet) as sandwich. The connection between top skin of UHSC and cold formed steel is made with self tapping screws. Flexural performance of UHSC sandwich panel has been tested under flexural loading and it… More >

  • Open Access

    ARTICLE

    Prediction of Fracture Parameters of High Strength and Ultra-High Strength Concrete Beams using Minimax Probability Machine Regression and Extreme Learning Machine

    Vishal Shreyans Shah1, Henyl Rakesh Shah2, Pijush Samui3, A. Ramachra Murthy4

    CMC-Computers, Materials & Continua, Vol.44, No.2, pp. 73-84, 2014, DOI:10.3970/cmc.2014.044.073

    Abstract This paper deals with the development of models for prediction of facture parameters, namely, fracture energy and ultimate load of high strength and ultra high strength concrete based on Minimax Probability Machine Regression (MPMR) and Extreme Learning Machine (ELM). MPMR is developed based on Minimax Probability Machine Classification (MPMC). ELM is the modified version of Single Hidden Layer Feed Foreword Network (SLFN). MPMR and ELM has been used as regression techniques. Mathematical models have been developed in the form of relation between several input variables such as beam dimensions, water cement ratio, compressive strength, split More >

  • Open Access

    ARTICLE

    ANN Model to Predict Fracture Characteristics of High Strength and Ultra High Strength Concrete Beams

    Yuvaraj P1, A Ramachra Murthy2, Nagesh R Iyer3, S.K. Sekar4, Pijush Samui5

    CMC-Computers, Materials & Continua, Vol.41, No.3, pp. 193-214, 2014, DOI:10.3970/cmc.2014.041.193

    Abstract This paper presents fracture mechanics based Artificial Neural Network (ANN) model to predict the fracture characteristics of high strength and ultra high strength concrete beams. Fracture characteristics include fracture energy (Gf), critical stress intensity factor (KIC) and critical crack tip opening displacement (CTODc). Failure load of the beam (Pmax) is also predicated by using ANN model. Characterization of mix and testing of beams of high strength and ultra strength concrete have been described. Methodologies for evaluation of fracture energy, critical stress intensity factor and critical crack tip opening displacement have been outlined. Back-propagation training technique… More >

  • Open Access

    ARTICLE

    Multivariate Adaptive Regression Splines Model to Predict Fracture Characteristics of High Strength and Ultra High Strength Concrete Beams

    P. Yuvaraj1, A. Ramachandra Murthy2, Nagesh R. Iyer3, Pijush Samui4, S.K. Sekar5

    CMC-Computers, Materials & Continua, Vol.36, No.1, pp. 73-97, 2013, DOI:10.3970/cmc.2013.036.073

    Abstract This paper presents Multivariate Adaptive Regression Splines (MARS) model to predict the fracture characteristics of high strength and ultra high strength concrete beams. Fracture characteristics include fracture energy (GF), critical stress intensity factor (KIC) and critical crack tip opening displacement (CTODc). This paper also presents the details of development of MARS model to predict failure load (Pmax) of high strength concrete (HSC) and ultra high strength concrete (UHSC) beam specimens. Characterization of mix and testing of beams of high strength and ultra strength concrete have been described. Methodologies for evaluation of fracture energy, critical stress… More >

  • Open Access

    ARTICLE

    Evaluation of Fracture Parameters by Double-G, Double-K Models and Crack Extension Resistance for High Strength and Ultra High Strength Concrete Beams

    A. Ramachandra Murthy1, Nagesh R. Iyer1, B.K. Raghu Prasad2

    CMC-Computers, Materials & Continua, Vol.31, No.3, pp. 229-252, 2012, DOI:10.3970/cmc.2012.031.229

    Abstract This paper presents the advanced analytical methodologies such as Double- G and Double - K models for fracture analysis of concrete specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete. Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Double-G model is based on energy concept and couples the Griffith's brittle fracture theory with the bridging softening property of concrete. The double-K fracture model is based on stress intensity factor approach. Various fracture parameters such as cohesive fracture toughness (KIcc), unstable fracture toughness (KIcun) and… More >

  • Open Access

    ARTICLE

    Fracture Analysis of High strength and Ultra high strength Concrete beams by using Finite Element Method

    A. Ramachandra Murthy1, Nagesh R. Iyer1, B.K. Raghu Prasad2

    CMC-Computers, Materials & Continua, Vol.30, No.2, pp. 177-194, 2012, DOI:10.3970/cmc.2012.030.177

    Abstract This paper presents the details of nonlinear finite element analysis (FEA) of three point bending specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete (UHSC). Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Cracking strength criterion has been used for simulation of crack propagation by conducting nonlinear FEA. The description about FEA using crack strength criterion has been outlined. Bi-linear tension softening relation has been used for modeling the cohesive stresses ahead of the crack tip. Numerical studies have been carried out on fracture More >

  • Open Access

    ARTICLE

    Fatigue Crack Growth Study and Remaining Life Assessment of High Strength and Ultra High Strength Concrete Beams

    A. Ramachandra Murthy1, Nagesh R. Iyer1, B.K. Raghu Prasad2

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.6, pp. 459-480, 2012, DOI:10.3970/cmes.2012.089.459

    Abstract This paper presents the details of crack growth study and remaining life assessment of concrete specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete (UHSC). Flexural fatigue tests have been conducted on HSC, HSC1 and UHSC beams under constant amplitude loading with a stress ratio of 0.2. It is observed from the studies that (i) the failure patterns of HSC1 and UHSC beams indicate their ductility as the member was intact till the crack propagated up to 90% of the beam depth and (ii) the remaining life decreases with increase… More >

Displaying 1-10 on page 1 of 7. Per Page