Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Systematic analysis of DNA polymerases as therapeutic targets in pan-cancers

    ZHENHUA LI1, HUILAI LV1, FAN ZHANG1, ZIMING ZHU2, QIANG GUO3, MINGBO WANG1, CHAO HUANG1, LIJUAN CHEN4, WENPAN ZHANG4, YUN LI5,*, ZIQIANG TIAN1,*

    BIOCELL, Vol.48, No.1, pp. 123-138, 2024, DOI:10.32604/biocell.2023.031568

    Abstract Introduction: DNA polymerases are crucial for maintaining genome stability and influencing tumorigenesis. However, the clinical implications of DNA polymerases in tumorigenesis and their potential as anti-cancer therapy targets are not well understood. Methods: We conducted a systematic analysis using TCGA Pan-Cancer Atlas data and Gene Set Cancer Analysis results to examine the expression profiles of 15 DNA polymerases (POLYs) and their clinical correlations. We also evaluated the prognostic value of POLYs by analyzing their expression levels in relation to overall survival time (OS) using Kaplan-Meier survival curves. Additionally, we investigated the correlations between POLY expression and immune cells, DNA damage… More >

  • Open Access

    ARTICLE

    UCHL5 inhibits U251 glioma cell proliferation and tumor growth via stabilizing and deubiquitinating PTEN

    YUE XIAO1,2,#, WENJING MA2,#, XINYI CHEN2, WEIWEI HU3, QIANQIAN DI2, XIBAO ZHAO2, GUODONG HUANG1, WEILIN CHEN1,2,*

    BIOCELL, Vol.47, No.12, pp. 2617-2625, 2023, DOI:10.32604/biocell.2023.042476

    Abstract Background: Glioma is the most common primary brain tumor. Exploration of new tumorigenesis mechanism of glioma is critical to determine more effective treatment targets as well as to develop effective prognosis methods that can enhance the treatment efficacy. We previously demonstrated that the deubiquitinase biquitin carboxyl-terminal hydrolase L5 (UCHL5) was downregulated in human glioma. However, the effect and mechanism of UCHL5 on the proliferation of glioma cells remains unknown. Methods: Transfection of siRNA was used to knockdown the expression of UCHL5 in U251 cells. The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, Edu assay, and colony formation assay were employed to… More > Graphic Abstract

    UCHL5 inhibits U251 glioma cell proliferation and tumor growth via stabilizing and deubiquitinating PTEN

  • Open Access

    ARTICLE

    Calcyclin-binding protein contributes to cholangiocarcinoma progression by inhibiting ubiquitination of MCM2

    YUSEN ZHANG1,2,3, LIPING LIU1,2,3, BIWEI LUO1,2,3, HONGGUI TANG1,2,3, XIAOFANG YU1,2,3, SHIYUN BAO1,2,3,*

    Oncology Research, Vol.31, No.3, pp. 317-331, 2023, DOI:10.32604/or.2023.028418

    Abstract Background: Cholangiocarcinoma (CCA) represents the epithelial cell cancer with high aggressiveness whose five-year survival rate is poor with standard treatment. Calcyclin-binding protein (CACYBP) shows aberrant expression within several malignant tumors, but the role of CACYBP in CCA remains unknown. Methods: Immunohistochemical (IHC) analysis was used to identify CACYBP overexpression in clinical samples of CCA patients. Moreover, its correlation with clinical outcome was revealed. Furthermore, CACYBP’s effect on CCA cell growth and invasion was investigated in vitro and in vivo using loss-of-function experiments. Results: CACYBP showed up-regulation in CCA, which predicts the dismal prognostic outcome. CACYBP had an important effect on… More >

  • Open Access

    ARTICLE

    Tripartite Motif-Containing 46 Promotes Viability and Inhibits Apoptosis of Osteosarcoma Cells by Activating NF-kB Signaling Through Ubiquitination of PPARα

    Wenwei Jiang*, Xinyu Cai*, Tianyang Xu*, Kaiyuan Liu*, Dong Yang*, Lin Fan*, Guodong Li*, Xiao Yu

    Oncology Research, Vol.28, No.4, pp. 409-421, 2020, DOI:10.3727/096504020X15868639303417

    Abstract Osteosarcoma (OS), the most common bone cancer, causes high morbidity in children and young adults. TRIM46 is a member of the family of tripartite motif (TRIM)-containing proteins that serve as important regulators of tumorigenesis. Here we investigate the possible role of TRIM46 in OS and the underlying molecular mechanism. We report an increase in the expression of TRIM46 in OS and its association with tumor size, Enneking’s stage, and patient prognosis. TRIM46 knockdown inhibits OS cell viability and cell cycle progression and induces apoptosis, while TRIM46 overexpression exerts inverse effects, which are inhibited by peroxisome proliferator-activated receptor alpha (PPAR )… More >

  • Open Access

    ARTICLE

    Murine double minute gene 2 (MDM2) promoted hepatocellular carcinoma (HCC) cell growth by targeting fructose-1,6-bisphosphatase (FBP1) for degradation

    YAO XU1,#, BIN WU2,#, JING YANG3, SHENG ZHANG2, LONGGEN LIU4, SUOBAO XU2,*, JIAKAI JIANG2,*

    BIOCELL, Vol.46, No.6, pp. 1483-1491, 2022, DOI:10.32604/biocell.2022.017745

    Abstract To study the roles and association of murine double minute gene 2 (MDM2) and fructose-1,6-biphosphatase (FBP1) in human hepatocellular carcinoma (HCC), growth response of human HCC cells was assessed using proliferation and apoptosis assay. Pro-survival AKT signaling associated proteins (p-AKT, survivin and cleaved caspase 3) were assessed using western blotting. The correlation between MDM2 and FBP1 was assessed using co-immunoprecipitation combined with ubiquitination assay. Our data suggested that low expression of FBP1 was correlated with high levels of MDM2 in HCC cell lines (Huh7 and Hep3B). Overexpression of FBP1 resulted in anti-proliferation, pro-apoptosis, the up-regulation of cleaved caspase 3 while… More >

  • Open Access

    REVIEW

    Ubiquitin-like posttranslational modifications in NAFLD progression and treatment

    FUJI YANG1, YAN HUANG1, YOUWEN TAN2,*, YONGMIN YAN1,*

    BIOCELL, Vol.46, No.2, pp. 389-400, 2022, DOI:10.32604/biocell.2021.015899

    Abstract Nonalcoholic fatty liver disease (NAFLD) is a long-lasting condition that affects the liver, destroying its function. Liver injury can cause steatosis and inflammation, and further activation of hepatic stellate cells (HSCs) often leads to the development of nonalcoholic liver fibrosis. The patient with NAFLD is at risk of developing advanced liver disease and complications, such as liver failure, hepatocellular carcinoma (HCC), and portal hypertension. Although our understanding of the cellular and molecular mechanisms of NAFLD has greatly improved in recent years, treatment remains limited. Analysis and characterization of protein posttranslational modifications (PTMs) could improve our understanding of NAFLD pathology and… More >

  • Open Access

    REVIEW

    Functions of ULK1 in autophagy and non-autophagy pathways and its implications in human physiology and disease

    LINNA TAN1,2, YUYONG TAN1,2, DELIANG LIU1,2,*

    BIOCELL, Vol.44, No.4, pp. 535-543, 2020, DOI:10.32604/biocell.2020.09171

    Abstract ULK1 (unc-51 like autophagy activating kinase 1), a mammalian serine/threonine kinase, is a key component of autophagy initiation complex and helps to induce all types of autophagy. Canonical autophagy is a process in which, through the interactions of a series of autophagy-related proteins, damaged organelles or misfolded proteins are engulfed by autophagosomes and then merged with lysosomes to be degraded. Thus, canonical autophagy is an important constituent part of the cellular “quality control.” Besides, accumulating evidence indicates that ULK1 exerts autophagy-independent effects in a cell-specific manner. For example, ULK1 facilitates neurite elongation through the regulation of endoplasmic reticulum (ER)–Golgi trafficking… More >

Displaying 1-10 on page 1 of 7. Per Page