Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7,633)
  • Open Access

    ARTICLE

    Maximizing Solar Potential Using the Differential Grey Wolf Algorithm for PV System Optimization

    Ezhilmathi Nagarathinam1, Buvana Devaraju2, Karthiyayini Jayamoorthy3, Padmavathi Radhakrishnan4, Santhana Lakshmi ChandraMohan5, Vijayakumar Perumal6, Karthikeyan Balakrishnan7,*

    Energy Engineering, Vol.121, No.8, pp. 2129-2142, 2024, DOI:10.32604/ee.2024.052280

    Abstract Maximum Power Point Tracking (MPPT) is crucial for maximizing the energy output of photovoltaic (PV) systems by continuously adjusting the operating point of the panels to track the point of maximum power production under changing environmental conditions. This work proposes the design of an MPPT system for solar PV installations using the Differential Grey Wolf Optimizer (DGWO). It dynamically adjusts the parameters of the MPPT controller, specifically the duty cycle of the SEPIC converter, to efficiently track the Maximum Power Point (MPP). The proposed system aims to enhance the energy harvesting capability of solar PV More >

  • Open Access

    ARTICLE

    Thermodynamic Performance Analysis of Geothermal Power Plant Based on Organic Rankine Cycle (ORC) Using Mixture of Pure Working Fluids

    Abdul Sattar Laghari1, Mohammad Waqas Chandio1, Laveet Kumar2,*, Mamdouh El Haj Assad3

    Energy Engineering, Vol.121, No.8, pp. 2023-2038, 2024, DOI:10.32604/ee.2024.051082

    Abstract The selection of working fluid significantly impacts the geothermal ORC’s Efficiency. Using a mixture as a working fluid is a strategy to improve the output of geothermal ORC. In the current study, modelling and thermodynamic analysis of ORC, using geothermal as a heat source, is carried out at fixed operating conditions. The model is simulated in the Engineering Equation Solver (EES). An environment-friendly mixture of fluids, i.e., R245fa/R600a, with a suitable mole fraction, is used as the operating fluid. The mixture provided the most convenient results compared to the pure working fluid under fixed operating More >

  • Open Access

    ARTICLE

    Applying an Ordinal Priority Approach Based Neutrosophic Fuzzy Axiomatic Design Approach to Develop Sustainable Geothermal Energy Source

    Chia-Nan Wang, Thuy-Duong Thi Pham*, Nhat-Luong Nhieu

    Energy Engineering, Vol.121, No.8, pp. 2039-2064, 2024, DOI:10.32604/ee.2024.050224

    Abstract Geothermal energy is considered a renewable, environmentally friendly, especially carbon-free, sustainable energy source that can solve the problem of climate change. In general, countries with geothermal energy resources are the ones going through the ring of fire. Therefore, not every country is lucky enough to own this resource. As a country with 117 active volcanoes and within the world’s ring of fire, it is a country whose geothermal resources are estimated to be about 40% of the world’s geothermal energy potential. However, the percentage used compared to the geothermal potential is too small. Therefore, this… More >

  • Open Access

    REVIEW

    Maximum Power Point Tracking Technology for PV Systems: Current Status and Perspectives

    Bo Yang1,2, Rui Xie1, Zhengxun Guo3,4,*

    Energy Engineering, Vol.121, No.8, pp. 2009-2022, 2024, DOI:10.32604/ee.2024.049423

    Abstract Maximum power point tracking (MPPT) technology plays a key role in improving the energy conversion efficiency of photovoltaic (PV) systems, especially when multiple local maximum power points (LMPPs) occur under partial shading conditions (PSC). It is necessary to modify the operating point efficiently and accurately with the help of MPPT technology to maximize the collected power. Even though a lot of research has been carried out and impressive progress achieved for MPPT technology, it still faces some challenges and dilemmas. Firstly, the mathematical model established for PV cells is not precise enough. Second, the existing… More > Graphic Abstract

    Maximum Power Point Tracking Technology for PV Systems: Current Status and Perspectives

  • Open Access

    ARTICLE

    CFD Investigation of Diffusion Law and Harmful Boundary of Buried Natural Gas Pipeline in the Mountainous Environment

    Liqiong Chen1, Kui Zhao1, Kai Zhang1,*, Duo Xv1, Hongxvan Hu2, Guoguang Ma1, Wenwen Zhan3

    Energy Engineering, Vol.121, No.8, pp. 2143-2165, 2024, DOI:10.32604/ee.2024.049362

    Abstract The leakage gas from a buried natural gas pipelines has the great potential to cause economic losses and environmental pollution owing to the complexity of the mountainous environment. In this study, computational fluid dynamics (CFD) method was applied to investigate the diffusion law and hazard range of buried natural gas pipeline leakage in mountainous environment. Based on cloud chart, concentration at the monitoring site and hazard range of lower explosion limit (LEL) and upper explosion limit (UEL), the influences of leakage hole direction and shape, soil property, burial depth, obstacle type on the diffusion law… More >

  • Open Access

    ARTICLE

    Study of Hygrothermal Behavior of Bio-Sourced Material Treated Ecologically for Improving Thermal Performance of Buildings

    Soumia Mounir1,2,*, Miloudia Slaoui2, Youssef Maaloufa1,2, Fatima Zohra El Wardi2,3, Yakubu Aminu Dodo4,5, Sara Ibn-Elhaj2, Abdelhamid Khabbazi2

    Journal of Renewable Materials, Vol.12, No.5, pp. 1007-1027, 2024, DOI:10.32604/jrm.2024.049392

    Abstract Creating sustainable cities is the only way to live in a clean environment, and this problem can be solved by using bio-sourced and recycled materials. For this purpose, the authors contribute to the valuation of sheep wool waste as an eco-friendly material to be used in insulation. The paper investigates the thermal, hygrothermal, and biological aspects of sheep wool by testing a traditional treatment. The biological method of aerobic mesophilic flora has been applied. Fluorescence X was used to determine the chemical composition of the materials used. Also, thermal characterization has been conducted. The thermal… More >

  • Open Access

    ARTICLE

    Adsorption of Malachite Green Using Activated Carbon from Mangosteen Peel: Optimization Using Box-Behnken Design

    Nabila Eka Yuningsih, Latifa Ariani, Suprapto Suprapto, Ita Ulfin, Harmami Harmami, Hendro Juwono, Yatim Lailun Ni’mah*

    Journal of Renewable Materials, Vol.12, No.5, pp. 981-992, 2024, DOI:10.32604/jrm.2024.049109

    Abstract In this research, activated carbon from mangosteen peel has been synthesized using sulfuric acid as an activator. The adsorption performance of the activated carbon was optimized using malachite green dye as absorbate. Malachite green dye waste is a toxic and non-biodegradable material that damages the environment. Optimization of adsorption processes was carried out using Response Surface Methodology (RSM) with a Box-Behnken Design (BBD). The synthesized activated carbon was characterized using FTIR and SEM instruments. The FTIR spectra confirmed the presence of a sulfonate group (-SOH) in the activated carbon, indicating that the activation process using… More >

  • Open Access

    ARTICLE

    Synergism of Zinc Oxide/Organoclay-Loaded Poly(lactic acid) Hybrid Nanocomposite Plasticized by Triacetin for Sustainable Active Food Packaging

    Ponusa Songtipya1,2,*, Thummanoon Prodpran1,2, Ladawan Songtipya1,2, Theerarat Sengsuk1

    Journal of Renewable Materials, Vol.12, No.5, pp. 951-967, 2024, DOI:10.32604/jrm.2024.049068

    Abstract The synergistic effect of organoclay (OC) and zinc oxide (ZnO) nanoparticles on the crucial properties of poly(lactic acid) (PLA) nanocomposite films was systematically investigated herein. After their incorporation into PLA via the solvent casting technique, the water vapor barrier property of the PLA/OC/ZnO film improved by a maximum of 86% compared to the neat PLA film without the deterioration of Young’s modulus or the tensile strength. Moreover, the film’s self-antibacterial activity against foodborne pathogens, including gram-negative (Escherichia coli, E. coli) and gram-positive (Staphylococcus aureus, S. aureus) bacteria, was enhanced by a maximum of approximately 98–99% compared to the neat… More > Graphic Abstract

    Synergism of Zinc Oxide/Organoclay-Loaded Poly(lactic acid) Hybrid Nanocomposite Plasticized by Triacetin for Sustainable Active Food Packaging

  • Open Access

    ARTICLE

    Abaca Fiber as a Potential Reinforcer for Acoustic Absorption Material at Middle-High Frequencies

    Susilo Indrawati*, Lila Yuwana, Suyatno, Mochamad Zainuri, Darminto*

    Journal of Renewable Materials, Vol.12, No.5, pp. 909-921, 2024, DOI:10.32604/jrm.2024.048452

    Abstract Recently, abaca fibers have become the focus of specialized research due to their intriguing characteristics, with their outstanding mechanical properties being a particularly notable. In the conducted study, the abaca fibers underwent a preliminary treatment process involving an alkaline solution, which was composed of 0.5% sodium hydroxide (NaOH) and 50% acetic acid (CHCOOH). This process entailed immersing each fiber in the solution for a period of one hour. This treatment led to a 52.36% reduction in lignin content compared to the levels before treatment, resulting in a dramatic decrease in the full width at half… More > Graphic Abstract

    Abaca Fiber as a Potential Reinforcer for Acoustic Absorption Material at Middle-High Frequencies

  • Open Access

    RETRACTION

    Retraction: Knockdown of Gab1 Inhibits Cellular Proliferation, Migration, and Invasion in Human Oral Squamous Carcinoma Cells

    Oncology Research Editorial Office

    Oncology Research, Vol.32, No.8, pp. 1387-1387, 2024, DOI:10.32604/or.2024.055039

    Abstract This article has no abstract. More >

Displaying 1-10 on page 1 of 7633. Per Page