Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Optimizing Power Allocation for D2D Communication with URLLC under Rician Fading Channel: A Learning-to-Optimize Approach

    Owais Muhammad1, Hong Jiang1,*, Mushtaq Muhammad Umer1, Bilal Muhammad2, Naeem Muhammad Ahtsam3

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 3193-3212, 2023, DOI:10.32604/iasc.2023.041232

    Abstract To meet the high-performance requirements of fifth-generation (5G) and sixth-generation (6G) wireless networks, in particular, ultra-reliable and low-latency communication (URLLC) is considered to be one of the most important communication scenarios in a wireless network. In this paper, we consider the effects of the Rician fading channel on the performance of cooperative device-to-device (D2D) communication with URLLC. For better performance, we maximize and examine the system’s minimal rate of D2D communication. Due to the interference in D2D communication, the problem of maximizing the minimum rate becomes non-convex and difficult to solve. To solve this problem, a learning-to-optimize-based algorithm is proposed… More >

  • Open Access

    ARTICLE

    Towards Fully Secure 5G Ultra-Low Latency Communications: A Cost-Security Functions Analysis

    Borja Bordel1,*, Ramón Alcarria1, Joaquin Chung2, Rajkumar Kettimuthu2, Tomás Robles1, Iván Armuelles3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 855-880, 2023, DOI:10.32604/cmc.2023.026787

    Abstract Future components to enhance the basic, native security of 5G networks are either complex mechanisms whose impact in the requiring 5G communications are not considered, or lightweight solutions adapted to ultra-reliable low-latency communications (URLLC) but whose security properties remain under discussion. Although different 5G network slices may have different requirements, in general, both visions seem to fall short at provisioning secure URLLC in the future. In this work we address this challenge, by introducing cost-security functions as a method to evaluate the performance and adequacy of most developed and employed non-native enhanced security mechanisms in 5G networks. We categorize those… More >

  • Open Access

    ARTICLE

    HARQ Optimization for PDCP Duplication-Based 5G URLLC Dual Connectivity

    Changsung Lee1,3, Junsung Kim2,3, Jaewook Jung3, Jungsuk Baik3, Jong-Moon Chung3,*

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 727-738, 2022, DOI:10.32604/cmc.2022.024824

    Abstract Packet duplication (PD) with dual connectivity (DC) was newly introduced in the 5G New Radio (NR) specifications to meet the stringent ultra reliable low latency communication (URLLC) requirements. PD technology uses duplicated packets in the packet data convergence protocol (PDCP) layer that are transmitted via two different access nodes (ANs) to the user equipment (UE) in order to enhance the reliability performance. However, PD can result in unnecessary retransmissions in the lower layers since the hybrid automatic retransmission request (HARQ) operation is unaware of the transmission success achieved through the alternate DC link to the UE. To overcome this issue,… More >

  • Open Access

    ARTICLE

    Deployment of Polar Codes for Mission-Critical Machine-Type Communication Over Wireless Networks

    Najib Ahmed Mohammed1, Ali Mohammed Mansoor1,*, Rodina Binti Ahmad1, Saaidal Razalli Bin Azzuhri2

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 573-592, 2022, DOI:10.32604/cmc.2022.020462

    Abstract Mission critical Machine-type Communication (mcMTC), also referred to as Ultra-reliable Low Latency Communication (URLLC), has become a research hotspot. It is primarily characterized by communication that provides ultra-high reliability and very low latency to concurrently transmit short commands to a massive number of connected devices. While the reduction in physical (PHY) layer overhead and improvement in channel coding techniques are pivotal in reducing latency and improving reliability, the current wireless standards dedicated to support mcMTC rely heavily on adopting the bottom layers of general-purpose wireless standards and customizing only the upper layers. The mcMTC has a significant technical impact on… More >

  • Open Access

    ARTICLE

    Frequency-Agile WLAN Notch UWB Antenna for URLLC Applications

    Amir Haider1, MuhibUr Rahman2, Hamza Ahmad3, Mahdi NaghshvarianJahromi4, Muhammad Tabish Niaz1, Hyung Seok Kim1,*

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2243-2254, 2021, DOI:10.32604/cmc.2021.015613

    Abstract This paper introduces a compact dual notched UWB antenna with an independently controllable WLAN notched band integrated with fixed WiMAX band-notch. The proposed antenna utilizes a slot resonator placed in the main radiator of the antenna for fixed WiMAX band notch, while an inverted L-shaped resonator in the partial ground plane for achieving frequency agility within WLAN notched band. The inverted L-shaped resonator is also loaded with fixed and variable capacitors to control and adjust the WLAN notch. The WLAN notched band can be controlled independently with a wide range of tunability without disturbing the WiMAX band-notch performance. Step by… More >

  • Open Access

    ARTICLE

    Multi-Gigabit CO-OFDM System over SMF and MMF Links for 5G URLLC Backhaul Network

    Amir Haider1, MuhibUr Rahman2, Tayyaba Khan3, Muhammad Tabish Niaz1, Hyung Seok Kim1,*

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1747-1758, 2021, DOI:10.32604/cmc.2021.015611

    Abstract The 5G cellular network aims at providing three major services: Massive machine-type communication (mMTC), ultra-reliable low-latency communications (URLLC), and enhanced-mobile-broadband (eMBB). Among these services, the URLLC and eMBB require strict end-to-end latency of 1 ms while maintaining 99.999% reliability, and availability of extremely high data rates for the users, respectively. One of the critical challenges in meeting these requirements is to upgrade the existing optical fiber backhaul network interconnecting the base stations with a multigigabit capacity, low latency and very high reliability system. To address this issue, we have numerically analyzed 100 Gbit/s coherent optical orthogonal frequency division multiplexing (CO-OFDM)… More >

Displaying 1-10 on page 1 of 6. Per Page