Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Reconfigurable Logic Design of CORDIC Based FFT Architecture for 5G Communications

    C. Thiruvengadam1,*, M. Palanivelan2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2803-2818, 2023, DOI:10.32604/iasc.2023.030493

    Abstract There are numerous goals in next-generation cellular networks (5G), which is expected to be available soon. They want to increase data rates, reduce end-to-end latencies, and improve end-user service quality. Modern networks need to change because there has been a significant rise in the number of base stations required to meet these needs and put the operators’ low-cost constraints to the test. Because it can withstand interference from other wireless networks, and Adaptive Complex Multicarrier Modulation (ACMM) system is being looked at as a possible choice for the 5th Generation (5G) of wireless networks. Many arithmetic units need to be… More >

  • Open Access

    ARTICLE

    Selective Mapping Scheme for Universal Filtered Multicarrier

    Akku Madhusudhan*, Sudhir Kumar Sharma

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1273-1282, 2023, DOI:10.32604/iasc.2023.030765

    Abstract The next step in mobile communication technology, known as 5G, is set to go live in a number of countries in the near future. New wireless applications have high data rates and mobility requirements, which have posed a challenge to mobile communication technology researchers and designers. 5G systems could benefit from the Universal Filtered Multicarrier (UFMC). UFMC is an alternate waveform to orthogonal frequency-division multiplexing (OFDM), in filtering process is performed for a sub-band of subcarriers rather than the entire band of subcarriers Inter Carrier Interference (ICI) between neighbouring users is reduced via the sub-band filtering process, which reduces out-of-band… More >

  • Open Access

    ARTICLE

    New 5G Kaiser-Based Windowing to Reduce Out of Band Emission

    Ahmed Hammoodi1, Lukman Audah1 , Laith Al-Jobouri2,*, Mazin Abed Mohammed3, Mustafa S. Aljumaily4

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2721-2738, 2022, DOI:10.32604/cmc.2022.020091

    Abstract OFDM based waveforms are considered as the main part of the latest cellular communications standard (namely 5G). Many inherited problems from the OFDM-Based LTE are still under investigation. Getting rid of the out of band emissions is one of these problems. Ensuring low out of band emission (OOBE) is deemed as one of the most critical challenges to support development of future technologies such as 6G and beyond. Universal Filtered Multi Carrier (UFMC) has been considered as one of the candidate waveforms for the 5G communications due to its robustness against Inter Carrier Interference (ICI) and the Inter Symbol Interference… More >

  • Open Access

    ARTICLE

    Power Domain Multiplexing Waveform for 5G Wireless Networks

    Korhan Cengiz1, Imran Baig2, Sumit Chakravarty3, Arun Kumar4, Mahmoud A. Albreem5, Mohammed H. Alsharif6, Peerapong Uthansakul7,*, Jamel Nebhen8, Ayman A. Aly9

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 2083-2095, 2022, DOI:10.32604/cmc.2022.019578

    Abstract Power domain non-orthogonal multiple access combined with a universal filtered multi-carrier (NOMA-UFMC) has the potential to cope with fifth generation (5G) unprecedented challenges. NOMA employs power-domain multiplexing to support several users, whereas UFMC is robust to timing and frequency misalignments. Unfortunately, NOMA-UFMC waveform has a high peak-to-average power (PAPR) issue that creates a negative affect due to multicarrier modulations, rendering it is inefficient for the impending 5G mobile and wireless networks. Therefore, this article seeks to presents a discrete Hartley transform (DHT) pre-coding-based NOMA enabled universal filter multicarrier (UFMC) (DHT-NOMA-UFMC) waveform design for lowering the high PAPR. Additionally, DHT precoding… More >

Displaying 1-10 on page 1 of 4. Per Page