Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (51)
  • Open Access

    ARTICLE

    Enhancing Building Facade Image Segmentation via Object-Wise Processing and Cascade U-Net

    Haemin Jung1, Heesung Park2, Hae Sun Jung3, Kwangyon Lee4,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2261-2279, 2024, DOI:10.32604/cmc.2024.057118 - 18 November 2024

    Abstract The growing demand for energy-efficient solutions has led to increased interest in analyzing building facades, as buildings contribute significantly to energy consumption in urban environments. However, conventional image segmentation methods often struggle to capture fine details such as edges and contours, limiting their effectiveness in identifying areas prone to energy loss. To address this challenge, we propose a novel segmentation methodology that combines object-wise processing with a two-stage deep learning model, Cascade U-Net. Object-wise processing isolates components of the facade, such as walls and windows, for independent analysis, while Cascade U-Net incorporates contour information to… More >

  • Open Access

    ARTICLE

    Densely Convolutional BU-NET Framework for Breast Multi-Organ Cancer Nuclei Segmentation through Histopathological Slides and Classification Using Optimized Features

    Amjad Rehman1, Muhammad Mujahid1, Robertas Damasevicius2,*, Faten S Alamri3, Tanzila Saba1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2375-2397, 2024, DOI:10.32604/cmes.2024.056937 - 31 October 2024

    Abstract This study aims to develop a computational pathology approach that can properly detect and distinguish histology nuclei. This is crucial for histopathological image analysis, as it involves segmenting cell nuclei. However, challenges exist, such as determining the boundary region of normal and deformed nuclei and identifying small, irregular nuclei structures. Deep learning approaches are currently dominant in digital pathology for nucleus recognition and classification, but their complex features limit their practical use in clinical settings. The existing studies have limited accuracy, significant processing costs, and a lack of resilience and generalizability across diverse datasets. We… More >

  • Open Access

    ARTICLE

    MA-Res U-Net: Design of Soybean Navigation System with Improved U-Net Model

    Qianshuo Liu, Jun Zhao*

    Phyton-International Journal of Experimental Botany, Vol.93, No.10, pp. 2663-2681, 2024, DOI:10.32604/phyton.2024.056054 - 30 October 2024

    Abstract Traditional machine vision algorithms have difficulty handling the interference of light and shadow changes, broken rows, and weeds in the complex growth circumstances of soybean fields, which leads to erroneous navigation route segmentation. There are additional shortcomings in the feature extractFion capabilities of the conventional U-Net network. Our suggestion is to utilize an improved U-Net-based method to tackle these difficulties. First, we use ResNet’s powerful feature extraction capabilities to replace the original U-Net encoder. To enhance the concentration on characteristics unique to soybeans, we integrate a multi-scale high-performance attention mechanism. Furthermore, to do multi-scale feature… More >

  • Open Access

    ARTICLE

    Guided-YNet: Saliency Feature-Guided Interactive Feature Enhancement Lung Tumor Segmentation Network

    Tao Zhou1,3, Yunfeng Pan1,3,*, Huiling Lu2, Pei Dang1,3, Yujie Guo1,3, Yaxing Wang1,3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4813-4832, 2024, DOI:10.32604/cmc.2024.054685 - 12 September 2024

    Abstract Multimodal lung tumor medical images can provide anatomical and functional information for the same lesion. Such as Positron Emission Computed Tomography (PET), Computed Tomography (CT), and PET-CT. How to utilize the lesion anatomical and functional information effectively and improve the network segmentation performance are key questions. To solve the problem, the Saliency Feature-Guided Interactive Feature Enhancement Lung Tumor Segmentation Network (Guide-YNet) is proposed in this paper. Firstly, a double-encoder single-decoder U-Net is used as the backbone in this model, a single-coder single-decoder U-Net is used to generate the saliency guided feature using PET image and… More >

  • Open Access

    ARTICLE

    Empowering Diagnosis: Cutting-Edge Segmentation and Classification in Lung Cancer Analysis

    Iftikhar Naseer1,2, Tehreem Masood1,2, Sheeraz Akram3,*, Zulfiqar Ali4, Awais Ahmad3, Shafiq Ur Rehman3, Arfan Jaffar1,2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4963-4977, 2024, DOI:10.32604/cmc.2024.050204 - 20 June 2024

    Abstract Lung cancer is a leading cause of global mortality rates. Early detection of pulmonary tumors can significantly enhance the survival rate of patients. Recently, various Computer-Aided Diagnostic (CAD) methods have been developed to enhance the detection of pulmonary nodules with high accuracy. Nevertheless, the existing methodologies cannot obtain a high level of specificity and sensitivity. The present study introduces a novel model for Lung Cancer Segmentation and Classification (LCSC), which incorporates two improved architectures, namely the improved U-Net architecture and the improved AlexNet architecture. The LCSC model comprises two distinct stages. The first stage involves… More >

  • Open Access

    ARTICLE

    U-Net Inspired Deep Neural Network-Based Smoke Plume Detection in Satellite Images

    Ananthakrishnan Balasundaram1,2, Ayesha Shaik1,2,*, Japmann Kaur Banga2, Aman Kumar Singh2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 779-799, 2024, DOI:10.32604/cmc.2024.048362 - 25 April 2024

    Abstract Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have been identified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions is essential for a comprehensive understanding of their impact on the Earth’s climate and for effectively enforcing emission regulations at a large scale. This work examines the feasibility of detecting and quantifying industrial smoke plumes using freely accessible geo-satellite imagery. The existing system has so many lagging factors such as limitations in accuracy, robustness, and efficiency and these factors hinder the effectiveness in supporting timely response… More >

  • Open Access

    ARTICLE

    Intelligent Machine Learning Based Brain Tumor Segmentation through Multi-Layer Hybrid U-Net with CNN Feature Integration

    Sharaf J. Malebary*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1301-1317, 2024, DOI:10.32604/cmc.2024.047917 - 25 April 2024

    Abstract Brain tumors are a pressing public health concern, characterized by their high mortality and morbidity rates. Nevertheless, the manual segmentation of brain tumors remains a laborious and error-prone task, necessitating the development of more precise and efficient methodologies. To address this formidable challenge, we propose an advanced approach for segmenting brain tumor Magnetic Resonance Imaging (MRI) images that harnesses the formidable capabilities of deep learning and convolutional neural networks (CNNs). While CNN-based methods have displayed promise in the realm of brain tumor segmentation, the intricate nature of these tumors, marked by irregular shapes, varying sizes,… More >

  • Open Access

    ARTICLE

    Material-SAM: Adapting SAM for Material XCT

    Xuelong Wu1, Junsheng Wang1,*, Zhongyao Li1, Yisheng Miao1, Chengpeng Xue1, Yuling Lang2, Decai Kong2, Xiaoying Ma2, Haibao Qiao2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3703-3720, 2024, DOI:10.32604/cmc.2024.047027 - 26 March 2024

    Abstract X-ray Computed Tomography (XCT) enables non-destructive acquisition of the internal structure of materials, and image segmentation plays a crucial role in analyzing material XCT images. This paper proposes an image segmentation method based on the Segment Anything model (SAM). We constructed a dataset of carbide in nickel-based single crystal superalloys XCT images and preprocessed the images using median filtering, histogram equalization, and gamma correction. Subsequently, SAM was fine-tuned to adapt to the task of material XCT image segmentation, resulting in Material-SAM. We compared the performance of threshold segmentation, SAM, U-Net model, and Material-SAM. Our method More >

  • Open Access

    ARTICLE

    Nuclei Segmentation in Histopathology Images Using Structure-Preserving Color Normalization Based Ensemble Deep Learning Frameworks

    Manas Ranjan Prusty1, Rishi Dinesh2, Hariket Sukesh Kumar Sheth2, Alapati Lakshmi Viswanath2, Sandeep Kumar Satapathy2,3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3077-3094, 2023, DOI:10.32604/cmc.2023.042718 - 26 December 2023

    Abstract This paper presents a novel computerized technique for the segmentation of nuclei in hematoxylin and eosin (H&E) stained histopathology images. The purpose of this study is to overcome the challenges faced in automated nuclei segmentation due to the diversity of nuclei structures that arise from differences in tissue types and staining protocols, as well as the segmentation of variable-sized and overlapping nuclei. To this extent, the approach proposed in this study uses an ensemble of the UNet architecture with various Convolutional Neural Networks (CNN) architectures as encoder backbones, along with stain normalization and test time… More >

  • Open Access

    ARTICLE

    Advancing Brain Tumor Analysis through Dynamic Hierarchical Attention for Improved Segmentation and Survival Prognosis

    S. Kannan1,*, S. Anusuya2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3835-3851, 2023, DOI:10.32604/cmc.2023.042465 - 26 December 2023

    Abstract Gliomas, the most prevalent primary brain tumors, require accurate segmentation for diagnosis and risk assessment. In this paper, we develop a novel deep learning-based method, the Dynamic Hierarchical Attention for Improved Segmentation and Survival Prognosis (DHA-ISSP) model. The DHA-ISSP model combines a three-band 3D convolutional neural network (CNN) U-Net architecture with dynamic hierarchical attention mechanisms, enabling precise tumor segmentation and survival prediction. The DHA-ISSP model captures fine-grained details and contextual information by leveraging attention mechanisms at multiple levels, enhancing segmentation accuracy. By achieving remarkable results, our approach surpasses 369 competing teams in the 2020 Multimodal… More >

Displaying 1-10 on page 1 of 51. Per Page