Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (66)
  • Open Access

    ARTICLE

    On the Liquid-Vapor Phase-Change Interface Conditions for Numerical Simulation of Violent Separated Flows

    Matthieu Ancellin1, *, Laurent Brosset2, Jean-Michel Ghidaglia1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 359-381, 2020, DOI:10.32604/fdmp.2020.08642 - 21 April 2020

    Abstract Numerous models have been proposed in the literature to include phase change into numerical simulations of two-phase flows. This review paper presents the modeling options that have been taken in order to obtain a model for violent separated flows with application to sloshing wave impacts. A relaxation model based on linear non-equilibrium thermodynamics has been chosen to compute the rate of phase change. The integration in the system of partial differential equations is done through a non-conservative advection term. For each of these modelling choices, some alternative models from the literature are presented and discussed. More >

  • Open Access

    ARTICLE

    MEASUREMENTS AND MODELING OF FLUID FLOW AND THERMAL PROCESSES IN AN INDUSTRIAL PRECALCINER

    Qingxin Baa , Scott Egbertb, Xuefang Lia,* , Lin Chenga,**

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-9, 2019, DOI:10.5098/hmt.12.20

    Abstract Precalciner performance is crucial to the production rate and lifespan of cement kiln systems. The gas-solid flow and pulverized coal combustion processes in an industrial precalciner were numerically modeled to understand the flow patterns and thermal processes in the system. The gas and meal flow rates and properties were measured on-site to determine the boundary conditions for the simulations and to validate the models. The upward swirl of the gas flow in the furnace helped disperse the particles and extend their duration in the precalciner. The O2 and CO2 concentration distributions indicated that the coal particles More >

  • Open Access

    ARTICLE

    EFFECT OF SEMI-CIRCLE RIB ON HEAT TRANSFER COEFFICIENT IN A RECTANGULAR CHANNEL

    Riyadh S. Al-Turaihi a , Doaa Fadhila,b,*, Azher M. Abedb

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-7, 2019, DOI:10.5098/hmt.13.29

    Abstract In this paper an experimental and numerical analysis has been conducted to study the effect of heat transfer and filed flow of two-phase flow (water and air) through a rectangular ribbed channel. The study has involved the several values of heat flux (120,140,160 Watts), air and water superficial velocity (1.096, 1.425, 1.644, 1.864, and 2.193 m/s) and (0.0421, 0.0842, and 0.1474 m/s), respectively. The distribution of temperature along the channel was photographed using thermal camera and compared with numerical results . The experimental test system was fabricated of vertical rectangular channel with cross section of… More >

  • Open Access

    ARTICLE

    A NUMERICAL SIMULATION OF TWO-PHASE FLOW INSTABILITIES IN A TRAPEZOIDAL MICROCHANNEL

    Yun Whan Na* , J. N. Chung

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-14, 2018, DOI:10.5098/hmt.11.36

    Abstract Flow instabilities of convective two-phase boiling in a trapezoidal microchannel were investigated. using a three-dimensional numerical model. Parameters such as wall temperature and inlet pressure that characterize the instability phenomena of flow boiling with periodic flow patterns were studied at different channel wall heat fluxes and flow mass fluxes. Results were obtained for various wall heat flux levels and mass flow rates. The numerical results showed that large amplitude and short period oscillations for wall temperature and inlet pressure fluctuations are major characteristics of flow instability. The wall temperature fluctuations are mainly initiated by the More >

  • Open Access

    ARTICLE

    A New Interface Identification Technique Based on Absolute Density Gradient for Violent Flows

    Yan Zhou1, Qingwei Ma*

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.2, pp. 131-147, 2018, DOI:10.3970/cmes.2018.00249

    Abstract An identification technique for sharp interface and penetrated isolated particles is developed for simulating two-dimensional, incompressible and immiscible two-phase flows using meshless particle methods in this paper. This technique is based on the numerically computed density gradient of fluid particles and is suitable for capturing large interface deformation and even topological changes such as merging and breaking up of phases. A number of assumed particle configurations will be examined using the technique, including these with different level of randomness of particle distribution. The tests will show that the new technique can correctly identify almost all More >

  • Open Access

    ARTICLE

    Buckley-Leverett Analysis for Transient Two-phase Flow in Fractal Porous Medium

    Yonggang Duan1, Ting Lu1, Mingqiang Wei1, Boming Yu2, Zhelun Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.6, pp. 481-504, 2015, DOI:10.3970/cmes.2015.109.481

    Abstract Analysis of Buckley-Leverett solution in fractal porous medium does prediction of water saturation profile a favor. On the approximation that porous medium consists of a bundle of tortuous capillaries, a physical conceptual Buckley- Leverett model of transient two-phase flow in fractal porous medium is developed based on the fractal characteristics of pore size distribution. The relationship between water saturation and distance is presented according to Buckley-Leverett solution, and the proposed Buckley-Leverett expression is the function of fractal structural parameters (such as pore fractal dimension, tortuosity fractal dimension, maximum and minimum diameters of capillaries) and fluid More >

  • Open Access

    ARTICLE

    On the Numerical Study of Capillary-driven Flow in a 3-D Microchannel Model

    C.T. Lee1, C.C. Lee2

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.5, pp. 375-403, 2015, DOI:10.3970/cmes.2015.104.375

    Abstract In this article, we demonstrate a numerical 3-D chip, and studied the capillary dynamics inside the microchannel. We applied the level set method on the Navier-Stokes equation which incorporates the surface tension and two-phase flow characteristics. We analyzed the capillary dynamics near the junction of two microchannels. Such a highlighting point is important that it not only can provide the information of interface behavior when fluids are made into a head-on collision, but also emphasize the idea for the design of the chip. In addition, we study the pressure distribution of the fluids at the More >

  • Open Access

    ARTICLE

    Numerical Modelling of Turbulence Effects on Droplet Collision Dynamics using the Level Set Method

    Ashraf Balabel1,

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.4, pp. 283-301, 2012, DOI:10.3970/cmes.2012.089.283

    Abstract This paper presents a novel numerical method for solving the twophase flow problems with moving interfaces in either laminar or turbulent flow regimes. The developed numerical method is based on the solution of the Reynolds- Averaged Navier Stokes equations in both phases separately with appropriate boundary conditions located at the interface separating the two fluids. The solution algorithm is performed on a regular and structured two-dimensional computational grid using the control volume approach. The complex shapes as well as the geometrical quantities of the interface are determined via the level set method. The numerical method More >

  • Open Access

    ARTICLE

    On the Use of PEBI Grids in the Numerical Simulations of Two-Phase Flows in Fractured Horizontal Wells

    Yongsheng An1, Xiaodong Wu1, Deli Gao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.2, pp. 123-142, 2012, DOI:10.3970/cmes.2012.089.123

    Abstract The accuracy of numerical simulation of a two-phase (oil and water) flow in a fractured horizontal well depends greatly upon the types of grids used in the computation. Cartesian grids have been widely used in recent years, but they have some disadvantages in describing complex structural wells, such as fractured horizontal wells. For example, Cartesian grids are not efficient in describing the main wellbores and the fractures of fractured horizontal wells, and the results can frequently suffer from grid orientation effects, even though a grid-refinement is often introduced to enhance the adaptability of a Cartesian… More >

  • Open Access

    ARTICLE

    Simulation of Bubbly Flow using Different Turbulence Models

    K. Ibrahim1, W.A. El-Askary1,2, A. Balabel1, I.M. Sakr1

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.1, pp. 79-104, 2012, DOI:10.3970/cmes.2012.085.079

    Abstract In the present paper, a numerical code has been developed with different turbulence models aiming at simulating turbulent bubbly flows in vertical circular pipes. The mass and momentum conservation equations are used to describe the motion of both phases (water/air). Because of the averaging process additional models are needed for the inter-phase momentum transfer and turbulence quantities for closure. The continuous phase (water) turbulence is represented using different turbulence models namely: two-equation k-ε, extended k-ε and shear-stress transport (SST) k-ω turbulence models which contains additional term to account for the effect of the dispersed phase… More >

Displaying 41-50 on page 5 of 66. Per Page