Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    PROCEEDINGS

    Topology Optimization of Mega-Casting Thin-Walled Structures of Vehicle Body with Stiffness Objective and Process Filling Constraints

    Jiayu Chen1, Yingchun Bai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011393

    Abstract Mega-casting techniques are widely used to manufacture large piece of thin-walled structures for vehicle body in Automotive industries, especially with the rapid growing electric vehicle market. Topology optimization is effective design method to reach higher mechanical performance yet lightweight potential for casting structures [1-3]. Most of existing works is focused on geometric-type casting constraints such as drawn angle, partion line, undercut, and enclose holes. However, the challenges in mega-casting arise from the complexities in the casting process such as filling and solidification, and the corresponding defects have larger influences on the structural performances [4-6]. Partial… More >

  • Open Access

    ARTICLE

    Simulation Analysis of New Energy Vehicle Engine Cooling System Based on K-E Turbulent Flow Mathematical Model

    Hongyu Mu1,2,*, Yinyan Wang1, Chuanlei Yang1, Hong Teng2, Xingtian Zhao2, Hongquan Lu2, Dechun Wang2, Shiyang Hao2, Xiaolong Zhang2, Yan Jin2

    Energy Engineering, Vol.120, No.10, pp. 2325-2342, 2023, DOI:10.32604/ee.2023.029360 - 28 September 2023

    Abstract New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles. The new energy engine cooling technology is critical in the design of new energy vehicles. This paper used one-and three-way joint simulation methods to simulate the refrigeration system of new energy vehicles. Firstly, a k-ε turbulent flow model for the cooling pump flow field is established based on the principle of computational fluid dynamics. Then, the CFD commercial fluid analysis software FLUENT is used to simulate the flow field of the cooling pump under different inlet flow conditions. This paper proposes More > Graphic Abstract

    Simulation Analysis of New Energy Vehicle Engine Cooling System Based on K-E Turbulent Flow Mathematical Model

  • Open Access

    ARTICLE

    A Variational Multiscale Method for Particle Dispersion Modeling in the Atmosphere

    Y. Nishio1,*, B. Janssens1, K. Limam2, J. van Beeck3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 743-753, 2023, DOI:10.32604/fdmp.2022.021848 - 29 September 2022

    Abstract A LES model is proposed to predict the dispersion of particles in the atmosphere in the context of Chemical, Biological, Radiological and Nuclear (CBRN) applications. The code relies on the Finite Element Method (FEM) for both the fluid and the dispersed solid phases. Starting from the Navier-Stokes equations and a general description of the FEM strategy, the Streamline Upwind Petrov-Galerkin (SUPG) method is formulated putting some emphasis on the related assembly matrix and stabilization coefficients. Then, the Variational Multiscale Method (VMS) is presented together with a detailed illustration of its algorithm and hierarchy of computational More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF HEAT AND MASS TRANSFER OF HUMID-AIR INSIDE AN OPEN CAVITY: PARAMETRIC STUDY

    Tounsi Chatia,* , Kouider Rahmanib, Toufik Tayeb Naasc, Abdelkader Rouibahb

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-11, 2022, DOI:10.5098/hmt.18.19

    Abstract Numerical results of turbulent natural convection and mass transfer in an open enclosure for different aspect ratios (AR = 0.5, 1, and 2) with a humidair are carried out. Mass fraction and local Nusselt number were proposed to investigate the heat and mass transfer. A heat flux boundary conditions were subjected to the lateral walls and the bottom one make as an adiabatic wall, while the top area was proposed as a free surface. Effect of Rayleigh numbers (106More >

  • Open Access

    ARTICLE

    Simulation of Non-Isothermal Turbulent Flows Through Circular Rings of Steel

    Abid. A. Memon1, M. Asif Memon1, Kaleemullah Bhatti1, Kamsing Nonlaopon2,*, Ilyas Khan3

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4341-4355, 2022, DOI:10.32604/cmc.2022.019407 - 11 October 2021

    Abstract This article is intended to examine the fluid flow patterns and heat transfer in a rectangular channel embedded with three semi-circular cylinders comprised of steel at the boundaries. Such an organization is used to generate the heat exchangers with tube and shell because of the production of more turbulence due to zigzag path which is in favor of rapid heat transformation. Because of little maintenance, the heat exchanger of such type is extensively used. Here, we generate simulation of flow and heat transfer using non-isothermal flow interface in the Comsol multiphysics 5.4 which executes the… More >

  • Open Access

    ARTICLE

    A Meshless and Matrix-Free Approach to Modeling Turbulent Fluid Flow

    Matthew Wilkinson, Javier Villarreal, Andrew Meade*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1373-1393, 2021, DOI:10.32604/cmes.2021.017883 - 25 November 2021

    Abstract A meshless and matrix-free fluid dynamics solver (SOMA) is introduced that avoids the need for user generated and/or analyzed grids, volumes, and meshes. Incremental building of the approximation avoids creation and inversion of possibly dense block diagonal matrices and significantly reduces user interaction. Validation results are presented from the application of SOMA to subsonic, compressible, and turbulent flow over an adiabatic flat plate. More >

  • Open Access

    ARTICLE

    Analysis of Turbulent Flow on Tidal Stream Turbine by RANS and BEM

    Younes Noorollahi1,2,*, Mohammad-Javad Ziabakhsh Ganji1, Mohammadmahdi Rezaei1,2, Mojtaba Tahani3

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 515-532, 2021, DOI:10.32604/cmes.2021.012386 - 19 April 2021

    Abstract

    Nowadays, concerns arise because of the depletion of fossil fuel resources that forced scientists to develop new energy extraction methods. One of these renewable resources is tidal energy, where Iran has this potential significantly. There are many ways to obtain the kinetic energy of the fluid flow caused by the moon’s gravitational effect on seas. Using horizontal axis tidal turbines is one of the ways to achieve the kinetic energy of the fluid. Since this type of turbine has similar technology to horizontal axis wind turbines, they may be an appropriate choice for constructing a tidal

    More >

  • Open Access

    ABSTRACT

    Estimation of Turbulent Flow from Wall Information via Machine Learning

    Yousuke Shimoda1, Takahiro Matsumori1, Kazuki Sato1, Tatsuro Hirano1, Naoya Fukushima1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 16-16, 2021, DOI:10.32604/icces.2021.08337

    Abstract Along with rapid development of computer technologies, a wide range of turbulent flows have been investigated by direct numerical simulations and the big databases have been built throughout the world. From the DNS results, we can investigate turbulent characteristics in three-dimensional space and time. In the laboratory experiment, we can apply sophisticated laser diagnostics technique to measure flow field non-invasively in research. On actual equipment, it is very difficult to get the flow field data away from the wall. We can measure only wall information, such as wall shear stresses and pressure. When we predict… More >

  • Open Access

    ARTICLE

    LES Investigation of Drag-Reducing Mechanism of Turbulent Channel Flow with Surfactant Additives

    Jingfa Li1, Bo Yu1,*, Qianqian Shao2, Dongliang Sun1

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.2, pp. 541-563, 2020, DOI:10.32604/cmes.2020.011835 - 12 October 2020

    Abstract In this work, the drag-reducing mechanism of high-Reynoldsnumber turbulent channel flow with surfactant additives is investigated by using large eddy simulation (LES) method. An N-parallel finitely extensible nonlinear elastic model with Peterlin’s approximation (FENE-P) is used to describe the rheological behaviors of non-Newtonian fluid with surfactant. To close the filtered LES equations, a hybrid subgrid scale (SGS) model coupling the spatial filter and temporal filter is applied to compute the subgrid stress and other subfilter terms. The finite difference method and projection algorithm are adopted to solve the LES governing equations. To validate the correctness More >

  • Open Access

    ARTICLE

    Computational Simulation of Turbulent Flow Around Tractor-Trailers

    D. O. Redchyts1, E. A. Shkvar2, *, S. V. Moiseienko3

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.1, pp. 91-103, 2020, DOI:10.32604/fdmp.2020.07933 - 01 February 2020

    Abstract A method to evaluate the properties of turbulent flow in proximity to the vehicle and close to the ground surface has been elaborated. Numerical simulations have been performed on the basis of the Unsteady Reynolds-averaged Navier-Stokes equations (URANS) written with respect to an arbitrary curvilinear coordinate system. These equations have been solved using the Spalart-Allmaras differential one-parametric turbulence model. The method of artificial compressibility has been used to improve the coupling of pressure and velocity in the framework of a finite volume approach. Time-averaged distributions of pressure fields, velocity components, streamlines in the entire area… More >

Displaying 1-10 on page 1 of 24. Per Page