Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Solving the Generalized Traveling Salesman Problem Using Sequential Constructive Crossover Operator in Genetic Algorithm

    Zakir Hussain Ahmed1,*, Maha Ata Al-Furhood2, Abdul Khader Jilani Saudagar3, Shakir Khan4

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1113-1131, 2024, DOI:10.32604/csse.2024.053574 - 13 September 2024

    Abstract The generalized travelling salesman problem (GTSP), a generalization of the well-known travelling salesman problem (TSP), is considered for our study. Since the GTSP is NP-hard and very complex, finding exact solutions is highly expensive, we will develop genetic algorithms (GAs) to obtain heuristic solutions to the problem. In GAs, as the crossover is a very important process, the crossover methods proposed for the traditional TSP could be adapted for the GTSP. The sequential constructive crossover (SCX) and three other operators are adapted to use in GAs to solve the GTSP. The effectiveness of GA using More >

  • Open Access

    ARTICLE

    Appropriate Combination of Crossover Operator and Mutation Operator in Genetic Algorithms for the Travelling Salesman Problem

    Zakir Hussain Ahmed1,*, Habibollah Haron2, Abdullah Al-Tameem3

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2399-2425, 2024, DOI:10.32604/cmc.2024.049704 - 15 May 2024

    Abstract Genetic algorithms (GAs) are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems. A simple GA begins with a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes. It uses a crossover operator to create better offspring chromosomes and thus, converges the population. Also, it uses a mutation operator to explore the unexplored areas by the crossover operator, and thus, diversifies the GA search space. A combination of crossover and mutation operators… More >

  • Open Access

    ARTICLE

    A Novel Insertion Solution for the Travelling Salesman Problem

    Emmanuel Oluwatobi Asani1,2,3, Aderemi Elisha Okeyinka4, Sunday Adeola Ajagbe5,6, Ayodele Ariyo Adebiyi1, Roseline Oluwaseun Ogundokun1,2,7,*, Temitope Samson Adekunle8, Pragasen Mudali5, Matthew Olusegun Adigun5

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1581-1597, 2024, DOI:10.32604/cmc.2024.047898 - 25 April 2024

    Abstract The study presents the Half Max Insertion Heuristic (HMIH) as a novel approach to solving the Travelling Salesman Problem (TSP). The goal is to outperform existing techniques such as the Farthest Insertion Heuristic (FIH) and Nearest Neighbour Heuristic (NNH). The paper discusses the limitations of current construction tour heuristics, focusing particularly on the significant margin of error in FIH. It then proposes HMIH as an alternative that minimizes the increase in tour distance and includes more nodes. HMIH improves tour quality by starting with an initial tour consisting of a ‘minimum’ polygon and iteratively adding… More >

  • Open Access

    ARTICLE

    A Drone-Based Blood Donation Approach Using an Ant Colony Optimization Algorithm

    Sana Abbas1, Faraha Ashraf1, Fahd Jarad2,3,*, Muhammad Shoaib Sardar1, Imran Siddique4

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1917-1930, 2023, DOI:10.32604/cmes.2023.024700 - 06 February 2023

    Abstract This article presents an optimized approach of mathematical techniques in the medical domain by manoeuvring the phenomenon of ant colony optimization algorithm (also known as ACO). A complete graph of blood banks and a path that covers all the blood banks without repeating any link is required by applying the Travelling Salesman Problem (often TSP). The wide use promises to accelerate and offers the opportunity to cultivate health care, particularly in remote or unmerited environments by shrinking lab testing reversal times, empowering just-in-time lifesaving medical supply. More >

  • Open Access

    ARTICLE

    An Improved Farmland Fertility Algorithm with Hyper-Heuristic Approach for Solving Travelling Salesman Problem

    Farhad Soleimanian Gharehchopogh1,*, Benyamin Abdollahzadeh1, Bahman Arasteh2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 1981-2006, 2023, DOI:10.32604/cmes.2023.024172 - 23 November 2022

    Abstract Travelling Salesman Problem (TSP) is a discrete hybrid optimization problem considered NP-hard. TSP aims to discover the shortest Hamilton route that visits each city precisely once and then returns to the starting point, making it the shortest route feasible. This paper employed a Farmland Fertility Algorithm (FFA) inspired by agricultural land fertility and a hyper-heuristic technique based on the Modified Choice Function (MCF). The neighborhood search operator can use this strategy to automatically select the best heuristic method for making the best decision. Lin-Kernighan (LK) local search has been incorporated to increase the efficiency and More >

  • Open Access

    ARTICLE

    Learning-Based Metaheuristic Approach for Home Healthcare Optimization Problem

    Mariem Belhor1,2,3, Adnen El-Amraoui1,*, Abderrazak Jemai2, François Delmotte1

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 1-19, 2023, DOI:10.32604/csse.2023.029058 - 16 August 2022

    Abstract This research focuses on the home health care optimization problem that involves staff routing and scheduling problems. The considered problem is an extension of multiple travelling salesman problem. It consists of finding the shortest path for a set of caregivers visiting a set of patients at their homes in order to perform various tasks during a given horizon. Thus, a mixed-integer linear programming model is proposed to minimize the overall service time performed by all caregivers while respecting the workload balancing constraint. Nevertheless, when the time horizon become large, practical-sized instances become very difficult to More >

  • Open Access

    ARTICLE

    Optimal Path Planning for Intelligent UAVs Using Graph Convolution Networks

    Akshya Jothi, P. L. K. Priyadarsini*

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1577-1591, 2022, DOI:10.32604/iasc.2022.020974 - 09 October 2021

    Abstract Unmanned Aerial Vehicles (UAVs) are in use for surveillance services in the geographic areas, that are very hard and sometimes not reachable by humans. Nowadays, UAVs are being used as substitutions to manned operations in various applications. The intensive utilization of autonomous UAVs has given rise to many new challenges. One of the vital problems that arise while deploying UAVs in surveillance applications is the Coverage Path Planning(CPP) problem. Given a geographic area, the problem is to find an optimal path/tour for the UAV such that it covers the entire area of interest with minimal… More >

  • Open Access

    ARTICLE

    Niche Genetic Algorithm for Solving Multiplicity Problems in Genetic Association Studies

    Fu-I Chou1, Wen-Hsien Ho2,3, Chiu-Hung Chen4,*

    Intelligent Automation & Soft Computing, Vol.26, No.3, pp. 501-512, 2020, DOI:10.32604/iasc.2020.013926

    Abstract This paper proposes a novel genetic algorithm (GA) that embeds a niche competition strategy (NCS) in the evolutionary flow to solve the combinational optimization problems that involve multiple loci in the search space. Unlike other niche-information based algorithms, the proposed NCSGA does not need prior knowledge to design niche parameters in the niching phase. To verify the solution capability of the new method, benchmark studies on both the travelling salesman problem (TSP) and the airline recovery scheduling problem were first made. Then, the proposed method was used to solve single nucleotide polymorphism (SNP) barcodes generation More >

Displaying 1-10 on page 1 of 8. Per Page