Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (192)
  • Open Access

    REVIEW

    The Correlation between Nutrition and Transport Mechanism under Abiotic Stress in Plants: A Comprehensive Review

    Muhammad Saleem1, Jianhua Zhang1, Muhammad Qasim2, Rashid Iqbal3, Li Song1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.6, pp. 1325-1344, 2024, DOI:10.32604/phyton.2024.048493

    Abstract Variations in the nutrients and water that plants require for metabolism, development, and the maintenance of cellular homeostasis are the main causes of abiotic stress in plants. It has, however, hardly ever been studied how these transporter proteins, such as aquaporin which is responsible for food and water intake in cell plasma membranes, interact with one another. This review aims to explore the interactions between nutrient transporters and aquaporins during water and nutrient uptake. It also investigates how symbiotic relationships influence the plant genome’s responses to regulatory processes such as photoperiodism, senescence, and nitrogen fixation. More >

  • Open Access

    ARTICLE

    A Combination Prediction Model for Short Term Travel Demand of Urban Taxi

    Mingyuan Li1,*, Yuanli Gu1, Qingqiao Geng2, Hongru Yu1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3877-3896, 2024, DOI:10.32604/cmc.2024.047765

    Abstract This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors. The model integrates the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and Convolutional Long Short Term Memory Neural Network (ConvLSTM) to predict short-term taxi travel demand. The CEEMDAN decomposition method effectively decomposes time series data into a set of modal components, capturing sequence characteristics at different time scales and frequencies. Based on the sample entropy value of components, secondary processing of more… More >

  • Open Access

    ARTICLE

    Knockdown of Zinc Transporter ZIP5 by RNA Interference Inhibits Esophageal Cancer Growth In Vivo

    Qian Li, Jing Jin, Jianghui Liu, Liqun Wang, Yutong He

    Oncology Research, Vol.24, No.3, pp. 205-214, 2016, DOI:10.3727/096504016X14648701447896

    Abstract We recently found that SLC39A5 (ZIP5), a zinc transporter, is overexpressed in esophageal cancer. Downregulation of ZIP5 inhibited the proliferation, migration, and invasion of the esophageal cancer cell line KYSE170 in vitro. In this study, we found that downregulation of SLC39A5 (ZIP5) by interference resulted in a significant reduction in esophageal cancer tumor volume and weight in vivo. COX2 (cyclooxygenase 2) expression was decreased and E-cadherin expression was increased in the KYSE170K xenografts, which was caused by the downregulation of ZIP5. However, we did not find that the downregulation of ZIP5 caused a change in More >

  • Open Access

    ARTICLE

    Silencing of ATP4B of ATPase H+/K+ Transporting Beta Subunit by Intragenic Epigenetic Alteration in Human Gastric Cancer Cells

    Shuye Lin*†, Bonan Lin*, Xiaoyue Wang*, Yuanming Pan, Qing Xu*, Jin-Shen He*, Wanghua Gong§, Rui Xing, Yuqi He, Lihua Guo*, Youyong Lu, Ji Ming Wang, Jiaqiang Huang*†

    Oncology Research, Vol.25, No.3, pp. 317-329, 2017, DOI:10.3727/096504016X14734735156265

    Abstract The ATPase H+/K+ Transporting Beta Subunit (ATP4B) encodes the b subunit of the gastric H+, K+ -ATPase, which controls gastric acid secretion and is therefore a target for acid reduction. Downregulation of ATP4B was recently observed in human gastric cancer (GC) without known mechanisms. In the present study, we demonstrated that ATP4B expression was decreased in human GC tissues and cell lines associated with DNA hypermethylation and histone hypoacetylation of histone H3 lysine 9 at its intragenic region close to the transcriptional start site. The expression of ATP4B was restored in GC cell lines by treatment with… More >

  • Open Access

    ARTICLE

    Monitoring Xylem Transport in the Stem of Lilium lancifolium Using Fluorescent Dye 5(6)-Carboxyfluorescein Diacetate

    Yulin Luo1,2,#, Panpan Yang2,#, Mengmeng Bi2, Leifeng Xu2, Fang Du3,*, Jun Ming2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.5, pp. 1057-1066, 2024, DOI:10.32604/phyton.2024.051197

    Abstract The xylem undergoes physiological changes in response to various environmental conditions during the process of plant growth. To understand these physiological changes, it is extremely important to observe the transport of xylem. In this study, the distribution and structure of vascular bundle in Lilium lancifolium were observed using the method of semithin section. Methods for introducing a fluorescent tracer into the xylem of the stems were evaluated. Then, the transport rule of 5(6)-Carboxyfluorescein diacetate (CFDA) in the xylem of the stem of L. lancifolium was studied by fluorescence dye in live cells tracer technology. The results showed… More >

  • Open Access

    ARTICLE

    Regulation of Acetate Utilization by Monocarboxylate Transporter 1 (MCT1) in Hepatocellular Carcinoma (HCC)

    Jeong Yong Jeon*1, Misu Lee*†1, Sang Hyun Whang*, Jung-Whan Kim, Arthur Cho*, Mijin Yun*

    Oncology Research, Vol.26, No.1, pp. 71-81, 2018, DOI:10.3727/096504017X14902648894463

    Abstract Altered energy metabolism is a biochemical fingerprint of cancer cells. Hepatocellular carcinoma (HCC) shows reciprocal [18F]fluorodeoxyglucose (FDG) and [11C]acetate uptake, as revealed by positron emission tomography/computed tomography (PET/CT). Previous studies have focused on the role of FDG uptake in cancer cells. In this study, we evaluated the mechanism and roles of [11C]acetate uptake in human HCCs and cell lines. The expression of monocarboxylate transporters (MCTs) was assessed to determine the transporters of [11C]acetate uptake in HCC cell lines and human HCCs with different [11C]acetate uptake. Using two representative cell lines with widely different [11C]acetate uptake (HepG2 for high… More >

  • Open Access

    ARTICLE

    A Novel Numerical Method for Simulating Boiling Heat Transfer of Nanofluids

    Yang Cao*, Xuhui Meng

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 583-595, 2024, DOI:10.32604/fhmt.2024.049111

    Abstract In this paper, a new approach called the Eulerian species method was proposed for simulating the convective and/or boiling heat transfer of nanofluids. The movement of nanoparticles in nanofluids is tracked by the species transport equation, and the boiling process of nanofluids is computed by the Eulerian multiphase method coupled with the RPI boiling model. The validity of the species transport equation for simulating nanoparticles movement was verified by conducting a simulation of nanofluids convective heat transfer. Simulation results of boiling heat transfer of nanofluids were obtained by using the commercial CFD software ANSYS Fluent More >

  • Open Access

    ARTICLE

    A Study on Optimizing the Double-Spine Type Flow Path Design for the Overhead Transportation System Using Tabu Search Algorithm

    Nguyen Huu Loc Khuu1,2,3, Thuy Duy Truong1,2,3, Quoc Dien Le1,2,3, Tran Thanh Cong Vu1,2,3, Hoa Binh Tran1,2,3, Tuong Quan Vo1,2,3,*

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 255-279, 2024, DOI:10.32604/iasc.2024.043854

    Abstract Optimizing Flow Path Design (FPD) is a popular research area in transportation system design, but its application to Overhead Transportation Systems (OTSs) has been limited. This study focuses on optimizing a double-spine flow path design for OTSs with 10 stations by minimizing the total travel distance for both loaded and empty flows. We employ transportation methods, specifically the North-West Corner and Stepping-Stone methods, to determine empty vehicle travel flows. Additionally, the Tabu Search (TS) algorithm is applied to branch the 10 stations into two main layout branches. The results obtained from our proposed method demonstrate More >

  • Open Access

    ARTICLE

    Efficient Route Planning for Real-Time Demand-Responsive Transit

    Hongle Li1, SeongKi Kim2,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 473-492, 2024, DOI:10.32604/cmc.2024.048402

    Abstract Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetables and determines the stop and the start according to the demands. This study explores the optimization of dynamic vehicle scheduling and real-time route planning in urban public transportation systems, with a focus on bus services. It addresses the limitations of current shared mobility routing algorithms, which are primarily designed for simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. The research introduces an route planning algorithm designed to dynamically accommodate passenger travel needs… More >

  • Open Access

    ARTICLE

    Smartphone-Based Wi-Fi Analysis for Bus Passenger Counting

    Mohammed Alatiyyah*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 875-907, 2024, DOI:10.32604/cmc.2024.047790

    Abstract In the contemporary era of technological advancement, smartphones have become an indispensable part of individuals’ daily lives, exerting a pervasive influence. This paper presents an innovative approach to passenger counting on buses through the analysis of Wi-Fi signals emanating from passengers’ mobile devices. The study seeks to scrutinize the reliability of digital Wi-Fi environments in predicting bus occupancy levels, thereby addressing a crucial aspect of public transportation. The proposed system comprises three crucial elements: Signal capture, data filtration, and the calculation and estimation of passenger numbers. The pivotal findings reveal that the system demonstrates commendable… More >

Displaying 1-10 on page 1 of 192. Per Page