Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (236)
  • Open Access

    REVIEW

    Learning from Scarcity: A Review of Deep Learning Strategies for Cold-Start Energy Time-Series Forecasting

    Jihoon Moon*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.071052 - 29 January 2026

    Abstract Predicting the behavior of renewable energy systems requires models capable of generating accurate forecasts from limited historical data, a challenge that becomes especially pronounced when commissioning new facilities where operational records are scarce. This review aims to synthesize recent progress in data-efficient deep learning approaches for addressing such “cold-start” forecasting problems. It primarily covers three interrelated domains—solar photovoltaic (PV), wind power, and electrical load forecasting—where data scarcity and operational variability are most critical, while also including representative studies on hydropower and carbon emission prediction to provide a broader systems perspective. To this end, we examined… More >

  • Open Access

    ARTICLE

    Attention-Enhanced ResNet-LSTM Model with Wind-Regime Clustering for Wind Speed Forecasting

    Weiqi Mao1,2,3, Enbo Yu1,*, Guoji Xu3, Xiaozhen Li3

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.069733 - 29 January 2026

    Abstract Accurate wind speed prediction is crucial for stabilizing power grids with high wind energy penetration. This study presents a novel machine learning model that integrates clustering, deep learning, and transfer learning to mitigate accuracy degradation in 24-h forecasting. Initially, an optimized DB-SCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm clusters wind fields based on wind direction, probability density, and spectral features, enhancing physical interpretability and reducing training complexity. Subsequently, a ResNet (Residual Network) extracts multi-scale patterns from decomposed wind signals, while transfer learning adapts the backbone network across clusters, cutting training time by over… More >

  • Open Access

    ARTICLE

    Enhanced COVID-19 and Viral Pneumonia Classification Using Customized EfficientNet-B0: A Comparative Analysis with VGG16 and ResNet50

    Williams Kyei*, Chunyong Yin, Kelvin Amos Nicodemas, Khagendra Darlami

    Journal on Artificial Intelligence, Vol.8, pp. 19-38, 2026, DOI:10.32604/jai.2026.074988 - 20 January 2026

    Abstract The COVID-19 pandemic has underscored the need for rapid and accurate diagnostic tools to differentiate respiratory infections from normal cases using chest X-rays (CXRs). Manual interpretation of CXRs is time-consuming and prone to errors, particularly in distinguishing COVID-19 from viral pneumonia. This research addresses these challenges by proposing a customized EfficientNet-B0 model for ternary classification (COVID-19, Viral Pneumonia, Normal) on the COVID-19 Radiography Database. Employing transfer learning with architectural modifications, including a tailored classification head and regularization techniques, the model achieves superior performance. Evaluated via accuracy, F1-score (macro-averaged), AUROC (macro-averaged), precision (macro-averaged), recall (macro-averaged), inference… More >

  • Open Access

    REVIEW

    A Survey of Federated Learning: Advances in Architecture, Synchronization, and Security Threats

    Faisal Mahmud1, Fahim Mahmud2, Rashedur M. Rahman1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073519 - 12 January 2026

    Abstract Federated Learning (FL) has become a leading decentralized solution that enables multiple clients to train a model in a collaborative environment without directly sharing raw data, making it suitable for privacy-sensitive applications such as healthcare, finance, and smart systems. As the field continues to evolve, the research field has become more complex and scattered, covering different system designs, training methods, and privacy techniques. This survey is organized around the three core challenges: how the data is distributed, how models are synchronized, and how to defend against attacks. It provides a structured and up-to-date review of… More >

  • Open Access

    ARTICLE

    Deep Retraining Approach for Category-Specific 3D Reconstruction Models from a Single 2D Image

    Nour El Houda Kaiber1, Tahar Mekhaznia1, Akram Bennour1,*, Mohammed Al-Sarem2,3,*, Zakaria Lakhdara4, Fahad Ghaban2, Mohammad Nassef5,6

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070337 - 12 January 2026

    Abstract The generation of high-quality 3D models from single 2D images remains challenging in terms of accuracy and completeness. Deep learning has emerged as a promising solution, offering new avenues for improvements. However, building models from scratch is computationally expensive and requires large datasets. This paper presents a transfer-learning-based approach for category-specific 3D reconstruction from a single 2D image. The core idea is to fine-tune a pre-trained model on specific object categories using new, unseen data, resulting in specialized versions of the model that are better adapted to reconstruct particular objects. The proposed approach utilizes a… More >

  • Open Access

    ARTICLE

    X-MalNet: A CNN-Based Malware Detection Model with Visual and Structural Interpretability

    Kirubavathi Ganapathiyappan1, Heba G. Mohamed2, Abhishek Yadav1, Guru Akshya Chinnaswamy1, Ateeq Ur Rehman3,*, Habib Hamam4,5,6,7

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-18, 2026, DOI:10.32604/cmc.2025.069951 - 09 December 2025

    Abstract The escalating complexity of modern malware continues to undermine the effectiveness of traditional signature-based detection techniques, which are often unable to adapt to rapidly evolving attack patterns. To address these challenges, this study proposes X-MalNet, a lightweight Convolutional Neural Network (CNN) framework designed for static malware classification through image-based representations of binary executables. By converting malware binaries into grayscale images, the model extracts distinctive structural and texture-level features that signify malicious intent, thereby eliminating the dependence on manual feature engineering or dynamic behavioral analysis. Built upon a modified AlexNet architecture, X-MalNet employs transfer learning to… More >

  • Open Access

    ARTICLE

    Cross-Dataset Transformer-IDS with Calibration and AUC Optimization (Evaluated on NSL-KDD, UNSW-NB15, CIC-IDS2017)

    Chaonan Xin*, Keqing Xu

    Journal of Cyber Security, Vol.7, pp. 483-503, 2025, DOI:10.32604/jcs.2025.071627 - 28 November 2025

    Abstract Intrusion Detection Systems (IDS) have achieved high accuracy on benchmark datasets, yet models often fail to generalize across different network environments. In this paper, we propose Transformer-IDS, a transformer-based network intrusion detection model designed for cross-dataset generalization. The model incorporates a classification token, multi-head self-attention, and embedding layers to learn versatile features, and it introduces a calibration module and an AUC-oriented optimization objective to improve reliability and ranking performance. We evaluate Transformer-IDS on three prominent datasets (NSL-KDD, UNSW-NB15, CIC-IDS2017) in both within-dataset and cross-dataset scenarios. Results demonstrate that while conventional deep IDS models (e.g., CNN-LSTM More >

  • Open Access

    ARTICLE

    Advancing Radiological Dermatology with an Optimized Ensemble Deep Learning Model for Skin Lesion Classification

    Adeel Akram1, Tallha Akram2, Ghada Atteia3,*, Ayman Qahmash4, Sultan Alanazi5, Faisal Mohammad Alotaibi5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2311-2337, 2025, DOI:10.32604/cmes.2025.069697 - 26 November 2025

    Abstract Advancements in radiation-based imaging and computational intelligence have significantly improved medical diagnostics, particularly in dermatology. This study presents an ensemble-based skin lesion classification framework that integrates deep neural networks (DNNs) with transfer learning, a customized DNN, and an optimized self-learning binary differential evolution (SLBDE) algorithm for feature selection and fusion. Leveraging computational techniques alongside medical imaging modalities, the proposed framework extracts and fuses discriminative features from multiple pre-trained models to improve classification robustness. The methodology is evaluated on benchmark datasets, including ISIC 2017 and the Argentina Skin Lesion dataset, demonstrating superior accuracy, precision, and F1-score… More >

  • Open Access

    ARTICLE

    Hybrid Attention-Driven Transfer Learning with DSCNN for Cross-Domain Bearing Fault Diagnosis under Variable Operating Conditions

    Qiang Ma1,2,3,4, Zepeng Li1,2, Kai Yang1,2,*, Shaofeng Zhang1,2, Zhuopei Wei1,2

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1607-1634, 2025, DOI:10.32604/sdhm.2025.069876 - 17 November 2025

    Abstract Effective fault identification is crucial for bearings, which are critical components of mechanical systems and play a pivotal role in ensuring overall safety and operational efficiency. Bearings operate under variable service conditions, and their diagnostic environments are complex and dynamic. In the process of bearing diagnosis, fault datasets are relatively scarce compared with datasets representing normal operating conditions. These challenges frequently cause the practicality of fault detection to decline, the extraction of fault features to be incomplete, and the diagnostic accuracy of many existing models to decrease. In this work, a transfer-learning framework, designated DSCNN-HA-TL,… More >

  • Open Access

    ARTICLE

    Leveraging Segmentation for Potato Plant Disease Severity Estimation and Classification via CBAM-EfficientNetB0 Transfer Learning

    Amit Prakash Singh1, Kajal Kaul1,*, Anuradha Chug1, Ravinder Kumar2, Veerubommu Shanmugam2

    Journal on Artificial Intelligence, Vol.7, pp. 451-468, 2025, DOI:10.32604/jai.2025.070773 - 06 November 2025

    Abstract In agricultural farms in India where the staple diet for most of the households is potato, plant leaf diseases, namely Potato Early Blight (PEB) and Potato Late Blight (PLB), are quite common. The class label Plant Healthy (PH) is also used. If these diseases are not identified early, they can cause massive crop loss and thereby incur huge economic losses to the farmers in the agricultural domain and can impact the gross domestic product of the nation. This paper presents a hybrid approach for potato plant disease severity estimation and classification of diseased and healthy… More >

Displaying 1-10 on page 1 of 236. Per Page