Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    SOX1 promotes osteosarcoma metastasis by modulating TSPAN12 expression

    HEYI LIU1,#, WENHAO CHENG2,#, JINGLIANG HE2, LUYAO ZHANG2, KADIRYA ASAN2, YULU CHEN2, JIAYUN WANG2, QI GAO2, SENG WANG2, ZIEN YU2, SHAOJIE MA2, LAN ZHU3,*, JING JI2,3,*

    BIOCELL, Vol.48, No.10, pp. 1465-1473, 2024, DOI:10.32604/biocell.2024.052670 - 02 October 2024

    Abstract Background: Osteosarcoma is the most common primary bone malignancy, with a strong tendency towards local invasion and metastasis. The SRY-Box Transcription Factor 1 (SOX1) gene, a member of the HMG-box family of DNA-binding transcription factors, plays a crucial role in embryogenesis and tumorigenesis. However, its role in osteosarcoma, particularly in relation to metastatic potential, is not well understood. Methods: The GSE14359 dataset containing five samples of conventional osteosarcoma and four samples of lung metastatic osteosarcoma was obtained from the Gene Expression Omnibus (GEO) database and analyzed for differential gene expression using the R language. Gene… More >

  • Open Access

    REVIEW

    SPATULA as a Versatile Tool in Plant: The Progress and Perspectives of SPATULA (SPT) Transcriptional Factor

    Lei Liang, Xiangyang Hu*

    Phyton-International Journal of Experimental Botany, Vol.93, No.3, pp. 517-531, 2024, DOI:10.32604/phyton.2024.049277 - 28 March 2024

    Abstract With the rapid development of modern molecular biology and bioinformatics, many studies have proved that transcription factors play an important role in regulating the growth and development of plants. SPATULA (SPT) belongs to the bHLH transcription family and participates in many processes of regulating plant growth and development. This review systemically summarizes the multiple roles of SPT in plant growth, development, and stress response, including seed germination, flowering, leaf size, carpel development, and root elongation, which is helpful for us to better understand the functions of SPT. More >

  • Open Access

    REVIEW

    Transcriptional factor RUNX1: A potential therapeutic target for fibrotic pulmonary disease

    JIA LIU1,2,#, FAPING WANG1,2,#, BO YUAN3, FENGMING LUO1,2,*

    BIOCELL, Vol.47, No.4, pp. 697-705, 2023, DOI:10.32604/biocell.2023.026148 - 08 March 2023

    Abstract Runt-related transcription factor-1 (RUNX1), also known as the core-binding factor alpha 2 subunit, is closely related to human leukemia. The functions of RUNX1 in modulating cell proliferation, differentiation, and survival in multiple systems have been gradually discovered with the emergence of transgenic mice. RUNX1 is a powerful transcription factor implicated in diverse signaling pathways and cellular mechanisms that participate in lung development and pulmonary diseases. RUNX1 has recently been identified as a target regulator of fibrotic remodeling diseases, particularly in the kidney. However, the role of RUNX1 in pulmonary fibrosis is unclear. Pulmonary fibrosis is More >

  • Open Access

    REVIEW

    The role of transcriptional factor brachyury in the development and repair of nucleus pulposus

    YINGHUI WU#, HONG ZHANG#, QIANG WANG, SUOYUAN LI, JUN SHEN*

    BIOCELL, Vol.46, No.6, pp. 1363-1364, 2022, DOI:10.32604/biocell.2022.018360 - 07 February 2022

    Abstract Transcription factor Brachyury, a protein containing 435 amino acids, has been widely investigated and reported in notochord differentiation and nucleus pulposus development. The crucial functions and underlying mechanisms by Brachyury are discussed in this paper, which suggests Brachyury can be developed into a potential novel target for the therapy of intervertebral disc degeneration. More >

  • Open Access

    ARTICLE

    The BHLH Transcriptional Factor PIF4 Competes with the R2R3-MYB Transcriptional Factor MYB75 to Fine-Tune Seeds Germination under High Glucose Stress

    Xiaoli Li, Shiyan Lu, Yaru Yang, Wenjie Wei, Jiali Wei, Xiaojun Yuan*, Ping Li*

    Phyton-International Journal of Experimental Botany, Vol.90, No.5, pp. 1387-1400, 2021, DOI:10.32604/phyton.2021.016362 - 27 May 2021

    Abstract It is known that the high level of sugar including glucose suppresses seed germination through ABA signal. ABI5 is an essential component to mediate ABA-dependent seed germination inhibition, but underlying mechanism needs more investigation. Previous study demonstrated the PIF4 activated the expression of ABI5 to suppress seed germination in darkness. Here we reported that PIF4 also mediated the seed germination inhibition through ABI5 under high concentration of glucose treatment. Furthermore, we found that PIF4 interacted with PAP1, the central factor to control anthocyanin biosynthesis. Such interaction was confirmed in vitro and in planta. Biochemical and physiological More >

  • Open Access

    ARTICLE

    NFAT regulates CSF-1 gene transcription triggered by L-selectin crosslinking

    CUIXIA CHEN1*, LINGLING CUI2, XIN SHANG2, XIANLU ZENG2

    BIOCELL, Vol.34, No.2, pp. 57-64, 2010, DOI:10.32604/biocell.2010.34.057

    Abstract L-selectin is a member of the selectin family that play an important role both in mediating the initial capture and subsequent rolling of leukocytes along the endothelial cells. Furthermore, L-selectin can function as a signal molecule. In our previous studies, we reported that L-selectin ligation could regulate CSF-1 (colony-stimulating factor-1) gene transcription, in which AP-1 acts as a crucial transcriptional factor. Here we investigated the function of the NFAT in the CSF-1 gene transcriptional events. We found that overexpression of WT NFAT induce CSF-1 gene transcription greatly in the activated Jurkat cells. Furthermore, we found More >

Displaying 1-10 on page 1 of 6. Per Page