Shiming He1,4, Meng Guo1, Bo Yang1, Osama Alfarraj2, Amr Tolba2, Pradip Kumar Sharma3, Xi’ai Yan4,*
CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5027-5047, 2023, DOI:10.32604/cmc.2023.038551
- 29 April 2023
Abstract Sensors produce a large amount of multivariate time series data to record the states of Internet of Things (IoT) systems. Multivariate time series timestamp anomaly detection (TSAD) can identify timestamps of attacks and malfunctions. However, it is necessary to determine which sensor or indicator is abnormal to facilitate a more detailed diagnosis, a process referred to as fine-grained anomaly detection (FGAD). Although further FGAD can be extended based on TSAD methods, existing works do not provide a quantitative evaluation, and the performance is unknown. Therefore, to tackle the FGAD problem, this paper first verifies that… More >