Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    REVIEW

    Solar- and/or Radiative Cooling-Driven Thermoelectric Generators: A Critical Review

    Jinglong Wang, Lin Lu*, Kai Jiao

    Energy Engineering, Vol.121, No.10, pp. 2681-2718, 2024, DOI:10.32604/ee.2024.051051

    Abstract Thermoelectric generators (TEGs) play a critical role in collecting renewable energy from the sun and deep space to generate clean electricity. With their environmentally friendly, reliable, and noise-free operation, TEGs offer diverse applications, including areas with limited power infrastructure, microelectronic devices, and wearable technology. The review thoroughly analyses TEG system configurations, performance, and applications driven by solar and/or radiative cooling, covering non-concentrating, concentrating, radiative cooling-driven, and dual-mode TEGs. Materials for solar absorbers and radiative coolers, simulation techniques, energy storage management, and thermal management strategies are explored. The integration of TEGs with combined heat and power More >

  • Open Access

    ARTICLE

    Waste Heat Recovery from a Drier Receiver of an A/C Unit Using Thermoelectric Generators

    Ali Jaber Abdulhamed1,*, Aws Al-Akam1, Ahmed A. Abduljabbar2, Mohammed H. Alkhafaji3

    Energy Engineering, Vol.120, No.8, pp. 1729-1746, 2023, DOI:10.32604/ee.2023.029069

    Abstract Thermoelectric generators (TEGs) are considered promising devices for waste heat recovery from various systems. The Seebeck effect can be utilized to generate power using the residual heat emitted by the filter dryer receiver (FDR) of an air conditioning (A/C) system, which would otherwise go to waste. The study aims to build a set of thermoelectric generators (TEG) to collect the waste heat of the FDR and generate low-power electricity. A novel electrical circuit with two transformers is designed and fabricated to produce a more stable voltage for operation and charging. The thermoelectric generator (TEGs) was… More >

  • Open Access

    ARTICLE

    Recent Techniques for Harvesting Energy from the Human Body

    Nidal M. Turab1, Hamza Abu Owida2, Jamal I. Al-Nabulsi2,*, Mwaffaq Abu-Alhaija1

    Computer Systems Science and Engineering, Vol.40, No.1, pp. 167-177, 2022, DOI:10.32604/csse.2022.017973

    Abstract The human body contains a near-infinite supply of energy in chemical, thermal, and mechanical forms. However, the majority of implantable and wearable devices are still operated by batteries, whose insufficient capacity and large size limit their lifespan and increase the risk of hazardous material leakage. Such energy can be used to exceed the battery power limits of implantable and wearable devices. Moreover, novel materials and fabrication methods can be used to create various medical therapies and life-enhancing technologies. This review paper focuses on energy-harvesting technologies used in medical and health applications, primarily power collectors from More >

Displaying 1-10 on page 1 of 3. Per Page