Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    PROCEEDINGS

    Mechanisms of Thermo-Mechanical Fatigue Crack Growth in a Polycrystalline Ni-Base Superalloy

    Lu Zhang1,*, Yuzhuo Wang1, Zhiwei Yu1, Rong Jiang1, Liguo Zhao1, Yingdong Song1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012701

    Abstract Thermo-mechanical fatigue (TMF), as the main failure mode of hot components of an aeroengine, are increasingly investigated recently [1,2]. TMF crack growth is studied in a nickel-based powder metallurgy (PM) superalloy subjected to in-phase (IP) and out-of-phase (OP), as well as isothermal fatigue (IF) at peak temperature. The crack growth rate and path are evaluated for both coarse grain (CG) and fine grain (FG) structure, especially the effects of phase angle and polycrystalline microstructure. The results show that the TMF crack propagation is mainly transgranular in OP condition; while in IP condition, crack propagates intergranularly… More >

  • Open Access

    PROCEEDINGS

    A Coupled Thermo-Mechanical Finite Element Method with Optimized Explicit Time Integration for Welding Distortion and Stress Analysis

    Hui Huang1,*, Yongbing Li1, Shuhui Li1, Ninshu Ma2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011348

    Abstract The sequentially coupled thermo-mechanical finite element analysis (FEA) with implicit iteration scheme is widely adopted for welding process simulation because the one-way coupling scheme is believed to be more efficient. However, such computational framework faces the bottleneck of scalability in large-scale analysis due to the exponential growth of computational burden with respect to the number of unknowns in a FEA model. In the present study, a fully coupled approach with explicit integration was developed to simulate fusion welding induced temperature, distortion, and residual stresses. A mass scaling and heat capacity inverse scaling technique was proposed More >

  • Open Access

    PROCEEDINGS

    Heat Generation, Plastic Deformation and Stresses Evolution in Inertia Friction Welding of Ni-Based Superalloy

    Chang-an Li1, Guoliang Qin1,*, Hao Wang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012370

    Abstract The interactions among thermal history, plastic deformation and stress in inertia friction welding (IFW) under different welding parameters have been widely considered a crucial issue and still not fully understood. A novel 3D fully coupled finite element model based on a plastic friction pair was developed to simulate the IFW process of a Ni-based superalloy and reveal the omnidirectional thermo-mechanical coupling mechanism under different welding conditions. The numerical model successfully simulated the deceleration, deformation processes, and peak torsional moments in IFW and captured the evolution of temperature, plastic deformation, and stress. The simulated results were… More >

  • Open Access

    ARTICLE

    Thermo-Mechanical, Physico-Chemical, Morphological, and Fire Characteristics of Eco-Friendly Particleboard Manufactured with Phosphorylated Lignin Addition

    Apri Heri Iswanto1,*, Harisyah Manurung1, Asma Sohail2, Lee Seng Hua3,9, Petar Antov4, Deded Sarip Nawawi5, Sarah Latifah5, Dewi Shafa Kayla5,6, Sukma Surya Kusumah6, Muhammad Adly Rahandi Lubis6, Linda Makovická Osvaldová7, Mohd. Hazwan Hussin8, Rangabhashiyam Selvasembian9, Lum Wei Chen10, Puji Rahmawati Nurcahyani6, Nam Hun Kim11, Widya Fatriasari6

    Journal of Renewable Materials, Vol.12, No.7, pp. 1311-1341, 2024, DOI:10.32604/jrm.2024.052172 - 21 August 2024

    Abstract Lignin, lignosulfonate, and synthesized phosphorylated lignosulfonate were introduced as green fillers in citric acid-sucrose adhesives for bonding particleboard fabricated from areca leaf sheath (ALS). The characteristics of particleboards were compared to that of ultralow emitting formaldehyde (ULEF-UF). The fillers derived from Eucalyptus spp. kraft-lignin were added for flame retardancy enhancement. 10% of each lignin and modified lignin was added into the ULEF-UF and citric acid-sucrose bonded particleboards. Analyses applied to particleboards included thermal characteristics, X-ray diffraction analysis (XRD), morphological properties, Fourier transform infrared spectroscopy (FTIR), as well as physical, mechanical, and fire resistance characteristics of the… More > Graphic Abstract

    Thermo-Mechanical, Physico-Chemical, Morphological, and Fire Characteristics of Eco-Friendly Particleboard Manufactured with Phosphorylated Lignin Addition

  • Open Access

    PROCEEDINGS

    A Coupled Hygro-Thermo-Mechanical Bond-Based Cosserat Peridynamic Porous Media Model for Heated Fracture of Concrete

    Jiaming Zhang1, Xihua Chu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.09055

    Abstract This paper presents a fully coupled hygro-thermo-mechanical bond-based Cosserat peridynamic porous media model for concrete at high temperature [1-3]. The model enables the problem of Poisson's ratio limitation to be relieved and the effect of cement particle size and its independent micro-rotation to be taken into account [4]. A multi-rate explicit integration strategy is proposed, which allows this complex multi-field fully coupled governing equation to be well solved. Numerical simulations mainly focus on the terms of temperature, water vapour pressure and damage level to verify the validity of the model [5-9]. And they additionally demonstrate More >

  • Open Access

    PROCEEDINGS

    Concurrent Topology and Fiber Path Optimization for Continuous Fiber Composite Under Thermo-Mechanical Loadings

    Zhelong He1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.010452

    Abstract This presentation introduces a concurrent topology and fiber-path optimization for continuous fiber composite under thermos-mechanical loadings. The optimization goal is to minimize the structural compliance of composite with thermos-mechanical coupling while satisfying volume fraction constraint, and ensuring the manufacturability by using continuous fibers and avoiding the appearance of over thin members. Level-set function is utilized to represent both shape boundary and fiber path. The zero isocontour of level-set function is updated using a shape sensitivity analysis for anisotropic composite, and fiber paths in shape are given by level-set functions determined from shape boundary. A level-set-based… More >

  • Open Access

    ARTICLE

    Topology Optimization of Stiffener Layout Design for Box Type Load-Bearing Component under Thermo-Mechanical Coupling

    Zhaohui Yang1,2,*, Tianhua Xiong1, Fei Du1,*, Baotong Li3

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1701-1718, 2023, DOI:10.32604/cmes.2023.022758 - 27 October 2022

    Abstract The structure optimization design under thermo-mechanical coupling is a difficult problem in the topology optimization field. An adaptive growth algorithm has become a more effective approach for structural topology optimization. This paper proposed a topology optimization method by an adaptive growth algorithm for the stiffener layout design of box type load-bearing components under thermo-mechanical coupling. Based on the stiffness diffusion theory, both the load stiffness matrix and the heat conduction stiffness matrix of the stiffener are spread at the same time to make sure the stiffener grows freely and obtain an optimal stiffener layout design.… More >

  • Open Access

    ARTICLE

    Thermo-Mechanical Analysis of the Sealing Performance of a Diesel-Engine Cylinder Gasket

    Xulan Wang1,*, Zezhong Chen1, Changzhen Liu1, Wei Ren2, Bo Wu1, Shude Ji1, Xiaofei Chen1, Shijie Wen1, Yonggang Hao1

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.4, pp. 821-831, 2021, DOI:10.32604/fdmp.2021.014707 - 17 May 2021

    Abstract Taking the combustor composite structure of a high-strength diesel engine as the main research object, dedicated tests have been conducted to verify the accuracy of three distinct cylinder gasket pressure simulation models. Using the measured cylinder gasket compression rebound curve, a gasket unit has been designed and manufactured. For this unit, the influence of the bolt pretension, cylinder body and cylinder head material on gasket sealing pressure has been investigated systematically in conditions of thermo-mechanical coupling. The results show that the bolt pretension force is one of the most important factors affecting the cylinder gasket More >

  • Open Access

    ARTICLE

    Prediction of Melt Pool Dimension and Residual Stress Evolution with Thermodynamically-Consistent Phase Field and Consolidation Models during Re-Melting Process of SLM

    Kang-Hyun Lee1, Gun Jin Yun1,2,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 87-112, 2021, DOI:10.32604/cmc.2020.012688 - 30 October 2020

    Abstract Re-melting process has been utilized to mitigate the residual stress level in the selective laser melting (SLM) process in recent years. However, the complex consolidation mechanism of powder and the different material behavior after the first laser melting hinder the direct implementation of the re-melting process. In this work, the effects of re-melting on the temperature and residual stress evolution in the SLM process are investigated using a thermo-mechanically coupled finite element model. The degree of consolidation is incorporated in the energy balance equation based on the thermodynamically-consistent phase-field approach. The drastic change of material… More >

  • Open Access

    ARTICLE

    Mechanical Characterisation of Densified Hardwood with Regard to Structural Applications

    Katharina Müller1,*, Walter Sonderegger2, Oliver Kläusler2, Michael Klippel1, Edwin Zea Escamilla3,4

    Journal of Renewable Materials, Vol.8, No.9, pp. 1091-1109, 2020, DOI:10.32604/jrm.2020.09483 - 03 August 2020

    Abstract The demand for high-performance, yet eco-friendly materials is increasing on all scales from small applications in the car industry, instrument or furniture manufacturing to greater dimensions like floorings, balcony furnishings and even construction. Wood offers a good choice on all of these scales and can be modified and improved in many different ways. In this study, two common European hardwood species, Beech (Fagus sylvatica L.) and Ash (Fraxinus excelsior L.) were densified in radial direction by thermo-mechanical treatment and the densified product was investigated in an extensive characterisation series to determine all relevant mechanical properties. Compression in… More >

Displaying 1-10 on page 1 of 27. Per Page