Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Weber Law Based Approach for Multi-Class Image Forgery Detection

    Arslan Akram1,3, Javed Rashid2,3,4, Arfan Jaffar1, Fahima Hajjej5, Waseem Iqbal6, Nadeem Sarwar7,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 145-166, 2024, DOI:10.32604/cmc.2023.041074 - 30 January 2024

    Abstract Today’s forensic science introduces a new research area for digital image analysis for multimedia security. So, Image authentication issues have been raised due to the wide use of image manipulation software to obtain an illegitimate benefit or create misleading publicity by using tempered images. Exiting forgery detection methods can classify only one of the most widely used Copy-Move and splicing forgeries. However, an image can contain one or more types of forgeries. This study has proposed a hybrid method for classifying Copy-Move and splicing images using texture information of images in the spatial domain. Firstly, More >

  • Open Access

    ARTICLE

    Recognizing Breast Cancer Using Edge-Weighted Texture Features of Histopathology Images

    Arslan Akram1,2, Javed Rashid2,3,4, Fahima Hajjej5, Sobia Yaqoob1,6, Muhammad Hamid7, Asma Irshad8, Nadeem Sarwar9,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1081-1101, 2023, DOI:10.32604/cmc.2023.041558 - 31 October 2023

    Abstract Around one in eight women will be diagnosed with breast cancer at some time. Improved patient outcomes necessitate both early detection and an accurate diagnosis. Histological images are routinely utilized in the process of diagnosing breast cancer. Methods proposed in recent research only focus on classifying breast cancer on specific magnification levels. No study has focused on using a combined dataset with multiple magnification levels to classify breast cancer. A strategy for detecting breast cancer is provided in the context of this investigation. Histopathology image texture data is used with the wavelet transform in this… More >

  • Open Access

    ARTICLE

    Traffic Sign Detection with Low Complexity for Intelligent Vehicles Based on Hybrid Features

    Sara Khalid1, Jamal Hussain Shah1,*, Muhammad Sharif1, Muhammad Rafiq2, Gyu Sang Choi3,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 861-879, 2023, DOI:10.32604/cmc.2023.035595 - 08 June 2023

    Abstract Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians. Consequently, traffic signs have been of great importance for every civilized country, which makes researchers give more focus on the automatic detection of traffic signs. Detecting these traffic signs is challenging due to being in the dark, far away, partially occluded, and affected by the lighting or the presence of similar objects. An innovative traffic sign detection method for red and blue signs in color images is proposed to resolve these issues. This technique aimed to devise… More >

  • Open Access

    ARTICLE

    Image Splicing Detection Using Generalized Whittaker Function Descriptor

    Dumitru Baleanu1,2,3, Ahmad Sami Al-Shamayleh4, Rabha W. Ibrahim5,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3465-3477, 2023, DOI:10.32604/cmc.2023.037162 - 31 March 2023

    Abstract Image forgery is a crucial part of the transmission of misinformation, which may be illegal in some jurisdictions. The powerful image editing software has made it nearly impossible to detect altered images with the naked eye. Images must be protected against attempts to manipulate them. Image authentication methods have gained popularity because of their use in multimedia and multimedia networking applications. Attempts were made to address the consequences of image forgeries by creating algorithms for identifying altered images. Because image tampering detection targets processing techniques such as object removal or addition, identifying altered images remains… More >

  • Open Access

    ARTICLE

    Hybrid Color Texture Features Classification Through ANN for Melanoma

    Saleem Mustafa1, Arfan Jaffar1, Muhammad Waseem Iqbal2,*, Asma Abubakar2, Abdullah S. Alshahrani3, Ahmed Alghamdi4

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2205-2218, 2023, DOI:10.32604/iasc.2023.029549 - 19 July 2022

    Abstract Melanoma is of the lethal and rare types of skin cancer. It is curable at an initial stage and the patient can survive easily. It is very difficult to screen all skin lesion patients due to costly treatment. Clinicians are requiring a correct method for the right treatment for dermoscopic clinical features such as lesion borders, pigment networks, and the color of melanoma. These challenges are required an automated system to classify the clinical features of melanoma and non-melanoma disease. The trained clinicians can overcome the issues such as low contrast, lesions varying in size,… More >

  • Open Access

    ARTICLE

    Time-Efficient Fire Detection Convolutional Neural Network Coupled with Transfer Learning

    Hanan A. Hosni Mahmoud, Amal H. Alharbi, Norah S. Alghamdi*

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1393-1403, 2022, DOI:10.32604/iasc.2022.020629 - 09 October 2021

    Abstract The detection of fires in surveillance videos are usually done by utilizing deep learning. In Spite of the advances in processing power, deep learning methods usually need extensive computations and require high memory resources. This leads to restriction in real time fire detection. In this research, we present a time-efficient fire detection convolutional neural network coupled with transfer learning for surveillance systems. The model utilizes CNN architecture with reasonable computational time that is deemed possible for real time applications. At the same time, the model will not compromise accuracy for time efficiency by tuning the More >

  • Open Access

    ARTICLE

    Real Time Feature Extraction Deep-CNN for Mask Detection

    Hanan A. Hosni Mahmoud, Norah S. Alghamdi, Amal H. Alharbi*

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1423-1434, 2022, DOI:10.32604/iasc.2022.020586 - 09 October 2021

    Abstract COVID-19 pandemic outbreak became one of the serious threats to humans. As there is no cure yet for this virus, we have to control the spread of Coronavirus through precautions. One of the effective precautions as announced by the World Health Organization is mask wearing. Surveillance systems in crowded places can lead to detection of people wearing masks. Therefore, it is highly urgent for computerized mask detection methods that can operate in real-time. As for now, most countries demand mask-wearing in public places to avoid the spreading of this virus. In this paper, we are… More >

  • Open Access

    ARTICLE

    Image Splicing Detection Based on Texture Features with Fractal Entropy

    Razi J. Al-Azawi1, Nadia M. G. Al-Saidi2, Hamid A. Jalab3,*, Rabha W. Ibrahim4, Dumitru Baleanu5,6,7

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3903-3915, 2021, DOI:10.32604/cmc.2021.020368 - 24 August 2021

    Abstract Over the past years, image manipulation tools have become widely accessible and easier to use, which made the issue of image tampering far more severe. As a direct result to the development of sophisticated image-editing applications, it has become near impossible to recognize tampered images with naked eyes. Thus, to overcome this issue, computer techniques and algorithms have been developed to help with the identification of tampered images. Research on detection of tampered images still carries great challenges. In the present study, we particularly focus on image splicing forgery, a type of manipulation where a… More >

  • Open Access

    ARTICLE

    Breast Cancer Classification Using Deep Convolution Neural Network with Transfer Learning

    Hanan A. Hosni Mahmoud*, Amal H. Alharbi, Doaa S. Khafga

    Intelligent Automation & Soft Computing, Vol.29, No.3, pp. 803-814, 2021, DOI:10.32604/iasc.2021.018607 - 01 July 2021

    Abstract In this paper, we aim to apply deep learning convolution neural network (Deep-CNN) technology to classify breast masses in mammograms. We develop a Deep-CNN combined with multi-feature extraction and transfer learning to detect breast cancer. The Deep-CNN is utilized to extract features from mammograms. A support vector machine (SVM) is then trained on the Deep-CNN features to classify normal, benign, and cancer cases. The scoring features from the Deep-CNN are coupled with texture features and used as inputs to the final classifier. Two texture features are included: texture features of spatial dependency and gradient-based histograms.… More >

  • Open Access

    ARTICLE

    Robust Magnification Independent Colon Biopsy Grading System over Multiple Data Sources

    Tina Babu1, Deepa Gupta1, Tripty Singh1,*, Shahin Hameed2, Mohammed Zakariah3, Yousef Ajami Alotaibi4

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 99-128, 2021, DOI:10.32604/cmc.2021.016341 - 04 June 2021

    Abstract Automated grading of colon biopsy images across all magnifications is challenging because of tailored segmentation and dependent features on each magnification. This work presents a novel approach of robust magnification-independent colon cancer grading framework to distinguish colon biopsy images into four classes: normal, well, moderate, and poor. The contribution of this research is to develop a magnification invariant hybrid feature set comprising cartoon feature, Gabor wavelet, wavelet moments, HSV histogram, color auto-correlogram, color moments, and morphological features that can be used to characterize different grades. Besides, the classifier is modeled as a multiclass structure with… More >

Displaying 1-10 on page 1 of 13. Per Page