Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (64)
  • Open Access

    ARTICLE

    TIDS: Tensor Based Intrusion Detection System (IDS) and Its Application in Large Scale DDoS Attack Detection

    Hanqing Sun1, Xue Li2,*, Qiyuan Fan3, Puming Wang3

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1659-1679, 2025, DOI:10.32604/cmc.2025.061426 - 09 June 2025

    Abstract The era of big data brings new challenges for information network systems (INS), simultaneously offering unprecedented opportunities for advancing intelligent intrusion detection systems. In this work, we propose a data-driven intrusion detection system for Distributed Denial of Service (DDoS) attack detection. The system focuses on intrusion detection from a big data perceptive. As intelligent information processing methods, big data and artificial intelligence have been widely used in information systems. The INS system is an important information system in cyberspace. In advanced INS systems, the network architectures have become more complex. And the smart devices in… More >

  • Open Access

    ARTICLE

    A Study of the 1 + 2 Partitioning Scheme of Fibrous Unitcell under Reduced-Order Homogenization Method with Analytical Influence Functions

    Shanqiao Huang1, Zifeng Yuan1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2893-2924, 2025, DOI:10.32604/cmes.2025.059948 - 03 March 2025

    Abstract The multiscale computational method with asymptotic analysis and reduced-order homogenization (ROH) gives a practical numerical solution for engineering problems, especially composite materials. Under the ROH framework, a partition-based unitcell structure at the mesoscale is utilized to give a mechanical state at the macro-scale quadrature point with pre-evaluated influence functions. In the past, the “1-phase, 1-partition” rule was usually adopted in numerical analysis, where one constituent phase at the mesoscale formed one partition. The numerical cost then is significantly reduced by introducing an assumption that the mechanical responses are the same all the time at the… More >

  • Open Access

    ARTICLE

    Research on Tensor Multi-Clustering Distributed Incremental Updating Method for Big Data

    Hongjun Zhang1,2, Zeyu Zhang3, Yilong Ruan4, Hao Ye5,6, Peng Li1,*, Desheng Shi1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1409-1432, 2024, DOI:10.32604/cmc.2024.055406 - 15 October 2024

    Abstract The scale and complexity of big data are growing continuously, posing severe challenges to traditional data processing methods, especially in the field of clustering analysis. To address this issue, this paper introduces a new method named Big Data Tensor Multi-Cluster Distributed Incremental Update (BDTMCDIncreUpdate), which combines distributed computing, storage technology, and incremental update techniques to provide an efficient and effective means for clustering analysis. Firstly, the original dataset is divided into multiple sub-blocks, and distributed computing resources are utilized to process the sub-blocks in parallel, enhancing efficiency. Then, initial clustering is performed on each sub-block… More >

  • Open Access

    PROCEEDINGS

    Distribution Transport: A High-Efficiency Method for Orbital Uncertainty Propagation

    Changtao Wang1, Honghua Dai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.010943

    Abstract Orbital uncertainty propagation is fundamental in space situational awareness-related missions such as orbit prediction and tracking. Linear models and full nonlinear Monte Carlo simulations were primarily used to propagate uncertainties [1]. However, these methods hampered the application due to low precision and intensive computation. Over the past two decades, numerous nonlinear uncertainty propagators have been proposed. Among these methods, the state transition tensor (STT) method has been widely used due to its controllable accuracy and high efficiency [2]. However, this method has two drawbacks. First, its semi-analytical formulation is too intricate to implement, which hinders… More >

  • Open Access

    ARTICLE

    SMSTracker: A Self-Calibration Multi-Head Self-Attention Transformer for Visual Object Tracking

    Zhongyang Wang, Hu Zhu, Feng Liu*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 605-623, 2024, DOI:10.32604/cmc.2024.050959 - 18 July 2024

    Abstract Visual object tracking plays a crucial role in computer vision. In recent years, researchers have proposed various methods to achieve high-performance object tracking. Among these, methods based on Transformers have become a research hotspot due to their ability to globally model and contextualize information. However, current Transformer-based object tracking methods still face challenges such as low tracking accuracy and the presence of redundant feature information. In this paper, we introduce self-calibration multi-head self-attention Transformer (SMSTracker) as a solution to these challenges. It employs a hybrid tensor decomposition self-organizing multi-head self-attention transformer mechanism, which not only… More >

  • Open Access

    ARTICLE

    Fault Diagnosis Scheme for Railway Switch Machine Using Multi-Sensor Fusion Tensor Machine

    Chen Chen1,2, Zhongwei Xu1, Meng Mei1,*, Kai Huang3, Siu Ming Lo2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4533-4549, 2024, DOI:10.32604/cmc.2024.048995 - 20 June 2024

    Abstract Railway switch machine is essential for maintaining the safety and punctuality of train operations. A data-driven fault diagnosis scheme for railway switch machine using tensor machine and multi-representation monitoring data is developed herein. Unlike existing methods, this approach takes into account the spatial information of the time series monitoring data, aligning with the domain expertise of on-site manual monitoring. Besides, a multi-sensor fusion tensor machine is designed to improve single signal data’s limitations in insufficient information. First, one-dimensional signal data is preprocessed and transformed into two-dimensional images. Afterward, the fusion feature tensor is created by More >

  • Open Access

    ARTICLE

    Deep Learning and Tensor-Based Multiple Clustering Approaches for Cyber-Physical-Social Applications

    Hongjun Zhang1,2, Hao Zhang2, Yu Lei3, Hao Ye1, Peng Li1,*, Desheng Shi1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4109-4128, 2024, DOI:10.32604/cmc.2024.048355 - 26 March 2024

    Abstract The study delves into the expanding role of network platforms in our daily lives, encompassing various mediums like blogs, forums, online chats, and prominent social media platforms such as Facebook, Twitter, and Instagram. While these platforms offer avenues for self-expression and community support, they concurrently harbor negative impacts, fostering antisocial behaviors like phishing, impersonation, hate speech, cyberbullying, cyberstalking, cyberterrorism, fake news propagation, spamming, and fraud. Notably, individuals also leverage these platforms to connect with authorities and seek aid during disasters. The overarching objective of this research is to address the dual nature of network platforms… More >

  • Open Access

    ARTICLE

    Block Incremental Dense Tucker Decomposition with Application to Spatial and Temporal Analysis of Air Quality Data

    SangSeok Lee1, HaeWon Moon1, Lee Sael1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 319-336, 2024, DOI:10.32604/cmes.2023.031150 - 30 December 2023

    Abstract How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data? Much of the multidimensional dynamic data in the real world is generated in the form of time-growing tensors. For example, air quality tensor data consists of multiple sensory values gathered from wide locations for a long time. Such data, accumulated over time, is redundant and consumes a lot of memory in its raw form. We need a way to efficiently store dynamically generated tensor data that increase over time and to model their behavior on demand… More > Graphic Abstract

    Block Incremental Dense Tucker Decomposition with Application to Spatial and Temporal Analysis of Air Quality Data

  • Open Access

    ARTICLE

    Multidomain Correlation-Based Multidimensional CSI Tensor Generation for Device-Free Wi-Fi Sensing

    Liufeng Du1,*, Shaoru Shang1, Linghua Zhang2, Chong Li1, Jianing Yang3, Xiyan Tian1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1749-1767, 2024, DOI:10.32604/cmes.2023.030144 - 17 November 2023

    Abstract Due to the fine-grained communication scenarios characterization and stability, Wi-Fi channel state information (CSI) has been increasingly applied to indoor sensing tasks recently. Although spatial variations are explicitly reflected in CSI measurements, the representation differences caused by small contextual changes are easily submerged in the fluctuations of multipath effects, especially in device-free Wi-Fi sensing. Most existing data solutions cannot fully exploit the temporal, spatial, and frequency information carried by CSI, which results in insufficient sensing resolution for indoor scenario changes. As a result, the well-liked machine learning (ML)-based CSI sensing models still struggling with stable More >

  • Open Access

    ARTICLE

    Modeling Method of C/C-ZrC Composites and Prediction of Equivalent Thermal Conductivity Tensor Based on Asymptotic Homogenization

    Junpeng Lyu1, Hai Mei1,2, Liping Zu1, Lisheng Liu1,2,*, Liangliang Chu1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 391-410, 2024, DOI:10.32604/cmes.2023.030614 - 22 September 2023

    Abstract This article proposes a modeling method for C/C-ZrC composite materials. According to the superposition of Gaussian random field, the original gray model is obtained, and the threshold segmentation method is used to generate the C-ZrC inclusion model. Finally, the fiber structure is added to construct the microstructure of the three-phase plain weave composite. The reconstructed inclusions can meet the randomness of the shape and have a uniform distribution. Using an algorithm based on asymptotic homogenization and finite element method, the equivalent thermal conductivity prediction of the microstructure finite element model was carried out, and the… More >

Displaying 1-10 on page 1 of 64. Per Page