Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    A Hybrid System for Customer Churn Prediction and Retention Analysis via Supervised Learning

    Soban Arshad1, Khalid Iqbal1,*, Sheneela Naz2, Sadaf Yasmin1, Zobia Rehman2

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4283-4301, 2022, DOI:10.32604/cmc.2022.025442 - 21 April 2022

    Abstract Telecom industry relies on churn prediction models to retain their customers. These prediction models help in precise and right time recognition of future switching by a group of customers to other service providers. Retention not only contributes to the profit of an organization, but it is also important for upholding a position in the competitive market. In the past, numerous churn prediction models have been proposed, but the current models have a number of flaws that prevent them from being used in real-world large-scale telecom datasets. These schemes, fail to incorporate frequently changing requirements. Data… More >

Displaying 1-10 on page 1 of 1. Per Page