Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (304)
  • Open Access

    ARTICLE

    The Influence of Preschool Teachers’ Social Skills on Job Burnout: A Moderated Mediation Model

    Yuanqing He*, Xinyue Yu, Yu Xia, Yanhua Cao

    International Journal of Mental Health Promotion, Vol.26, No.6, pp. 463-474, 2024, DOI:10.32604/ijmhp.2024.051909

    Abstract Background: Teacher burnout is a serious issue in the field of education, particularly in early childhood education, where teachers face high levels of work stress and emotional labor, leading to emotional exhaustion and job burnout. However, past research has not sufficiently explored the mechanisms of social skills, empathy, and mindfulness in mitigating teacher burnout. Therefore, this study aims to investigate the relationship between preschool teachers’ social skills, empathy, and mindfulness with job burnout, in order to provide theoretical basis and practical guidance for reducing teacher burnout. Methods: This research utilized a convenience sampling approach to… More >

  • Open Access

    ARTICLE

    Suppression of Ubiquitin-Specific Peptidase 17 (USP17) Inhibits Tumorigenesis and Invasion in Non-Small Cell Lung Cancer Cells

    Shengchao Zhang, Jun Yuan, Ruheng Zheng

    Oncology Research, Vol.24, No.4, pp. 263-269, 2016, DOI:10.3727/096504016X14666990347392

    Abstract Recently, deubiquitinating enzymes (DUBs) are emerging as new regulators in cancer progression. However, understanding of the involvement of DUBs in non-small cell lung cancer (NSCLC) is just beginning. In this study, we investigated the expression and biological function of ubiquitin-specific peptidase 17 (USP17) in NSCLC progression in vitro and in vivo. We found that the expression of USP17 was higher than in a normal control. We further efficiently depleted USP17 expression in two different NSCLC cells, A549 and H1299. The anchorage-independent growth ability of these cells, estimated by soft agar colony formation assay, was significantly More >

  • Open Access

    ARTICLE

    Overexpression of Protease Serine 8 Inhibits Glioma Cell Proliferation, Migration, and Invasion via Suppressing the Akt/mTOR Signaling Pathway

    Hu-yin Yang, Da-zhao Fang, Lian-shu Ding, Xiao-bo Hui, Dai Liu

    Oncology Research, Vol.25, No.6, pp. 923-930, 2017, DOI:10.3727/096504016X14798241682647

    Abstract Protease serine 8 (PRSS8), a serine peptidase, has a widespread expression in normal epidermal cells. Recently, many researchers demonstrated downregulation of PRSS8 in cancer tissues as well as its tumor suppressor role in cancer development. However, the biological functions of PRSS8 in glioma remain unclear. In the current study, we demonstrated a decreased expression of PRSS8 in glioma tissues and cell lines. PRSS8 upregulation inhibited glioma cell proliferation, migration, and invasion. In addition, xenograft experiments showed that PRSS8 overexpression suppressed glioma cell growth in vivo. We also found that upregulated PRSS8 reduced the protein expression More >

  • Open Access

    ARTICLE

    Protease Serine S1 Family Member 8 (PRSS8) Inhibits Tumor Growth In Vitro and In Vivo in Human Non-Small Cell Lung Cancer

    Chaonan Ma*1, Wei Ma*1, Nannan Zhou*, Na Chen*, Li An, Yijie Zhang*

    Oncology Research, Vol.25, No.5, pp. 781-787, 2017, DOI:10.3727/096504016X14772417575982

    Abstract Protease serine S1 family member 8 (PRSS8), a membrane-anchored serine protease, has been reported to be involved in the development of several human cancers. However, the role of PRSS8 in non-small cell lung cancer (NSCLC) pathogenesis remains unclear. The objective of this study was to investigate PRSS8 expression, biological function, and its related molecular mechanism in NSCLC. Our results showed that PRSS8 was expressed in a low amount in NSCLC cell lines. Ectopic expression of PRSS8 inhibited tumor growth in vitro and in vivo. Furthermore, ectopic expression of PRSS8 inhibited the migration and invasion of More >

  • Open Access

    ARTICLE

    Downregulation of Ubiquitin-Specific Protease 22 Inhibits Proliferation, Invasion, and Epithelial–Mesenchymal Transition in Osteosarcoma Cells

    Dengfeng Zhang1, Feng Jiang1, Xiao Wang, Guojun Li

    Oncology Research, Vol.25, No.5, pp. 743-751, 2017, DOI:10.3727/096504016X14772395226335

    Abstract Ubiquitin-specific protease 22 (USP22), a novel deubiquitinating enzyme, belongs to an extended family of proteins that have ubiquitin hydrolase activity. Recently, USP22 has attracted widespread attention because of its implication in carcinogenesis. However, there have been no studies, to our knowledge, investigating the expression of USP22 in osteosarcoma (OS) and its association with OS progression. In this study, we explored the role of USP22 in OS. We demonstrated that USP22 was highly expressed in OS tissue and cell lines. Downregulation of USP22 inhibited OS cell proliferation, invasion, and epithelial–mesenchymal transition (EMT) in vitro. In addition, More >

  • Open Access

    ARTICLE

    Knockdown of Ubiquitin-Specific Protease 14 (USP14) Inhibits the Proliferation and Tumorigenesis in Esophageal Squamous Cell Carcinoma Cells

    Jin Zhang, Danjie Zhang, Liangzhang Sun

    Oncology Research, Vol.25, No.2, pp. 249-257, 2017, DOI:10.3727/096504016X693164

    Abstract Ubiquitin-specific protease 14 (USP14), one of three proteasome-associated deubiquitinating enzymes (DUBs), plays an essential role in the development of human carcinoma. However, to the best of our knowledge, the role of USP14 in esophageal squamous cell carcinoma (ESCC) is unknown. In the current study, we investigated the expression and role of USP14 in ESCC. Our results showed that the level of USP14 was significantly increased in ESCC tissues and cell lines. Downregulation of USP14 significantly inhibited ESCC cell proliferation and ESCC tumor growth in nude mice. Downregulation of USP14 also suppressed the migration/invasion in ESCC More >

  • Open Access

    ARTICLE

    miR-133a-3p Targets SUMO-Specific Protease 1 to Inhibit Cell Proliferation and Cell Cycle Progress in Colorectal Cancer

    Guo-Qiang Zhou*, Fu Han*, Zhi-Liang Shi*, Liang Yu*, Xue-Feng Li*, Cheng Yu*, Cheng-Long Shen*, Dai-Wei Wan, Xin-Guo Zhu, Rui Li, Song-Bing He

    Oncology Research, Vol.26, No.5, pp. 795-800, 2018, DOI:10.3727/096504017X15004613574679

    Abstract Dysregulation of SUMO-specific protease 1 (SENP1) expression has been reported in several kinds of cancer, including human colorectal and prostate cancers, proposing SENP1 as an oncogene with a critical role in cancer progression. miR-133a-3p has been reported as a tumor suppressor in several malignant neoplasias. However, the precise molecular mechanisms underlying its role in colorectal cancer remain largely unknown. The aim of this work was to investigate the relationship between miR-133a-3p and SENP1 in colorectal cancer cells. We found that miR-133a-3p expression was downregulated in colorectal cancer tissues. In silico analyses indicated that SENP1 is More >

  • Open Access

    ARTICLE

    Proteasome Inhibitor MG132 Enhances Cisplatin-Induced Apoptosis in Osteosarcoma Cells and Inhibits Tumor Growth

    Farui Sun*, Yuanjin Zhang*, Lijun Xu*, Songbai Li*, Xiang Chen*, Ling Zhang*, Yifan Wu, Jun Li*

    Oncology Research, Vol.26, No.4, pp. 655-664, 2018, DOI:10.3727/096504017X15119525209765

    Abstract Although cisplatin has been shown to be an integral part of chemotherapy regimen in osteosarcoma (OS) treatment, toxicity issues and chemoresistance have hindered therapeutic development for OS. Exploring novel combination therapy methods is needed to circumvent the limitations of cisplatin alone. The proteasome inhibitor MG132 has shown antitumor effects in many solid tumors. However, little is known about its effects in combination with cisplatin in OS cells. In this study, we examined the effects of MG132 in combination with cisplatin in human OS cells (MG-63 and HOS). MG132 and cisplatin were applied to OS cells,… More >

  • Open Access

    ARTICLE

    MicroRNA-186 Suppresses Cell Proliferation and Metastasis Through Targeting Sentrin-Specific Protease 1 in Renal Cell Carcinoma

    Dan Jiao*, Man Wu, Lei Ji, Feng Liu§, Yingying Liu§

    Oncology Research, Vol.26, No.2, pp. 249-259, 2018, DOI:10.3727/096504017X14953948675430

    Abstract Recent evidence suggests that dysregulation of microRNAs is associated with the development of multiple malignancies. miR-186 has been reported as a critical cancer regulator in several types of cancers. However, its functional significance and molecular mechanism underlying renal cell carcinoma (RCC) remain unknown. In this study, our results showed that miR-186 expression was dramatically downregulated in RCC tissues and cell lines compared to that in adjacent normal tissues and cell lines. Overexpression of miR-186 significantly inhibited cell growth, colony formation, and cell invasion; caused cell cycle arrest at the G0/G1 phase; and induced cell apoptosis as… More >

  • Open Access

    ARTICLE

    Knockdown of TMPRSS3, a Transmembrane Serine Protease, Inhibits Proliferation, Migration, and Invasion in Human Nasopharyngeal Carcinoma Cells

    Jun-Ying Wang*, Xin Jin*, Xiao-Feng Li

    Oncology Research, Vol.26, No.1, pp. 95-101, 2018, DOI:10.3727/096504017X14920318811695

    Abstract TMPRSS3 belongs to the large type II transmembrane serine protease (TTSP) family, which plays an important role in the development and progression of tumors. However, the function of TMPRSS3 in nasopharyngeal carcinoma (NPC) remains unclear. The present study aimed to examine the impact of TMPRSS3 on the proliferation, migration, and invasion of NPC cells and their potential mechanisms. Our results demonstrated that the expression of TMPRSS3 was obviously upregulated in human NPC tissues and cell lines. Knockdown of TMPRSS3 expression significantly suppressed the proliferation and tumorigenicity of NPC cells in vitro and in vivo. Furthermore, More >

Displaying 1-10 on page 1 of 304. Per Page