Hsin-Ping Chu1, Cheng-Ying Lo2
CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.3&4, pp. 161-172, 2011, DOI:10.3970/cmes.2011.077.161
Abstract This paper presents the application of the differential transform method to solve strongly nonlinear equations with cubic nonlinearities and self-excitation terms. First, the equations are transformed by the differential transform method into the algebra equations in terms of the transformed functions. Secondly, the higher-order transformed functions are calculated in terms of other lower-order transformed functions through the iterative procedure. Finally, the solutions are approximated by the n-th partial sum of the infinite series obtained by the inverse differential transform. Two strongly nonlinear equations with different coefficients and initial conditions are given as illustrative examples. More >