Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    A Multi-Module Machine Learning Approach to Detect Tax Fraud

    N. Alsadhan*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 241-253, 2023, DOI:10.32604/csse.2023.033375 - 20 January 2023

    Abstract Tax fraud is one of the substantial issues affecting governments around the world. It is defined as the intentional alteration of information provided on a tax return to reduce someone’s tax liability. This is done by either reducing sales or increasing purchases. According to recent studies, governments lose over $500 billion annually due to tax fraud. A loss of this magnitude motivates tax authorities worldwide to implement efficient fraud detection strategies. Most of the work done in tax fraud using machine learning is centered on supervised models. A significant drawback of this approach is that… More >

Displaying 1-10 on page 1 of 1. Per Page