Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Fluid-Related Performances and Compressive Strength of Clinker-Free Cementitious Backfill Material Based on Phosphate Tailings

    Jin Yang1,2, Senye Liu1, Xingyang He1,2,*, Ying Su1,2, Jingyi Zeng2, Bohumír Strnadel1,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2077-2090, 2024, DOI:10.32604/fdmp.2024.050360 - 23 August 2024

    Abstract Phosphate tailings are usually used as backfill material in order to recycle tailings resources. This study considers the effect of the mix proportions of clinker-free binders on the fluidity, compressive strength and other key performances of cementitious backfill materials based on phosphate tailings. In particular, three solid wastes, phosphogypsum (PG), semi-aqueous phosphogypsum (HPG) and calcium carbide slag (CS), were selected to activate wet ground granulated blast furnace slag (WGGBS) and three different phosphate tailings backfill materials were prepared. Fluidity, rheology, settling ratio, compressive strength, water resistance and ion leaching behavior of backfill materials were determined.… More > Graphic Abstract

    Fluid-Related Performances and Compressive Strength of Clinker-Free Cementitious Backfill Material Based on Phosphate Tailings

  • Open Access

    ARTICLE

    Ash Detection of Coal Slime Flotation Tailings Based on Chromatographic Filter Paper Sampling and Multi-Scale Residual Network

    Wenbo Zhu1, Neng Liu1, Zhengjun Zhu2,*, Haibing Li1, Weijie Fu1, Zhongbo Zhang1, Xinghao Zhang1

    Intelligent Automation & Soft Computing, Vol.38, No.3, pp. 259-273, 2023, DOI:10.32604/iasc.2023.041860 - 27 February 2024

    Abstract The detection of ash content in coal slime flotation tailings using deep learning can be hindered by various factors such as foam, impurities, and changing lighting conditions that disrupt the collection of tailings images. To address this challenge, we present a method for ash content detection in coal slime flotation tailings. This method utilizes chromatographic filter paper sampling and a multi-scale residual network, which we refer to as MRCN. Initially, tailings are sampled using chromatographic filter paper to obtain static tailings images, effectively isolating interference factors at the flotation site. Subsequently, the MRCN, consisting of… More >

  • Open Access

    ARTICLE

    Development of Wet Shotcrete with Solid Waste as Aggregate: Strength Optimization and Mix Proportion Design

    Yafei Hu1,2, Keqing Li1,2, Bo Zhang1,2, Bin Han1,2,*

    Journal of Renewable Materials, Vol.11, No.9, pp. 3463-3484, 2023, DOI:10.32604/jrm.2023.027532 - 20 July 2023

    Abstract The super-fine particle size of tailings is its drawback as a recycled resource, which is reflected in the low strength of the new construction and industrial materials formed when it is mixed with cement and other cementitious materials. Therefore, it is crucial to study the effect of tailings particle size and cementitious material on the strength of tailings wet shotcrete (TWSC) and to investigate the optimal mix proportion. In this paper, a multivariate nonlinear response model was constructed by conducting central composite experiments to investigate the effect of different factors on the strength of TWSC.… More >

  • Open Access

    ARTICLE

    Fly Ash and Slag as Partial Replacement of Cement for the Synthesis of Low Carbon Cementitious Materials

    Yafei Hu1,2, Keqing Li1,2, Lujing Zheng3, Bin Han1,2,*

    Journal of Renewable Materials, Vol.11, No.5, pp. 2491-2511, 2023, DOI:10.32604/jrm.2023.025129 - 13 February 2023

    Abstract Tailings known as solid waste are generated by the mining industry. The development of tailings as wet shotcrete aggregates has significant economic and environmental benefits. The fine particle size of the tailings results in a large consumption of traditional cement as a cementitious material and insignificant improvement in strength. Therefore, a composite cementitious system of cement and solid waste resources (fly ash and slag powder) is explored for this study. In this paper, the response surface methodology (RSM) is used to optimize the experimental design and a multivariate nonlinear response model with cement, fly ash… More >

  • Open Access

    ARTICLE

    Effect of Natural Zeolite on Pore Structure of Cemented Uranium Tailings Backfill

    Fulin Wang*, Xinyang Geng, Zhengping Yuan, Shijiao Yang*

    Journal of Renewable Materials, Vol.11, No.3, pp. 1469-1484, 2023, DOI:10.32604/jrm.2022.024994 - 31 October 2022

    Abstract The use of some environmental functional minerals as backfill-modified materials may improve the leaching resistance of cemented uranium tailings backfill created from alkali-activated slag (CUTB), but these materials may participate in the hydration reaction of the cementitious materials, which could have a certain impact on the pore structure of the CUTB, thus affecting its mechanical properties and leaching resistance. In this paper, natural zeolite is selected as the backfill-modified material, and it is added to alkali-activated slag paste (AASP) and CUTB in cementitious material proportions of 4%, 8%, 12%, and 16% to prepare AASP mixtures… More >

  • Open Access

    ARTICLE

    Study on Strength Reduction Law and Meso-Crack Evolution of Lower Layered Cemented Tailings Backfill

    Huazhe Jiao1,2,3, Wenxiang Zhang1,2,3,*, Yunfei Wang1,2,3,*, Xinming Chen1,2,3, Liuhua Yang1,2,3, Yangyang Rong1,2,3

    Journal of Renewable Materials, Vol.11, No.3, pp. 1513-1529, 2023, DOI:10.32604/jrm.2023.026008 - 31 October 2022

    Abstract The green disposal of tailings solid waste is a problem to be solved in mine production. Cemented tailings filling stoping method can realize the dual goals of solid waste resource utilization and mined-out area reduction. However, the volume of the mined-out area of the open-pit method is larger than the filling capacity, resulting in the complex stratification of the underground backfill, and the strength of the backfill cannot meet the requirements. In this paper, according to the delamination situation, the specimens of horizontal and inclination angle layered cemented tailings backfill (LCTB) is made for a… More >

  • Open Access

    ARTICLE

    Utilization of Low-Alkalinity Cementitious Materials in Cemented Paste Backfill of Gold Mine Tailings

    Jiamao Li1,2,*, Chuimin Zhang1, Lin Li1, Chuangang Fan1,*, Zhaofang He3, Yuandi Qian3

    Journal of Renewable Materials, Vol.10, No.12, pp. 3439-3458, 2022, DOI:10.32604/jrm.2022.021214 - 14 July 2022

    Abstract The purpose of this paper was to explore the possibility of using low-alkalinity cementitious materials as binders, in which ground blast furnace slag and fly ash acted as a partial replacement of ordinary Portland cement, and CaSO4, Na2SO4, and CaO were used as a sulfate activator and alkali-activated additives, to solidify gold mine tailings for preparation of a green, inexpensive cemented paste backfill (CPB). For this target, the effects of cement/ tailings ratio, superplasticizer dosage, solid content, tailings fineness on the mechanical properties of the CPB were investigated. Additionally, the hydration mechanism of the CPB was… More >

  • Open Access

    REVIEW

    Phytoremediation of Rare Tailings-Contaminated Soil

    Min Huang, Zhirong Liu*, Xiang Li

    Journal of Renewable Materials, Vol.10, No.12, pp. 3351-3372, 2022, DOI:10.32604/jrm.2022.022393 - 14 July 2022

    Abstract In order to achieve the goal of circular economy and sustainable development of ecological environment, it is important to separate and recover associated elements from rare mineral resources. Compared with traditional physical and chemical remediation methods of contaminated soil, phytoremediation is regarded as the most promising green in-situ restoration technology. The purpose of this review is to effectively alleviate the environmental problems caused by rare tailings contaminated soil through phytoremediation and realize the recovery of uranium-thorium, rare earth elements (REEs) and tantalum-niobium. This review took rare tailings with uranium-thorium, REEs, tantalum-niobium in China as the… More >

  • Open Access

    ARTICLE

    Fabrication of Baking-Free Bricks Using Gold Tailings and Cemented Materials with Low Alkalinity

    Jiamao Li1,2,*, Tao Si1, Lin Li1, Chuangang Fan1,*, Zhaofang He3, Yuandi Qian3

    Journal of Renewable Materials, Vol.10, No.11, pp. 3041-3058, 2022, DOI:10.32604/jrm.2022.020054 - 29 June 2022

    Abstract The purpose of this paper was using gold mine tailings and cemented materials with low alkalinity to fabricate baking-free bricks. The obtained baking-free brick samples were evaluated by unconfined compressive strength (UCS), water absorption percentage, freezing-thawing cycle, and drying-wetting cycle. The microstructures of the baking-free brick samples were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. The baking-free brick specimens cured for 28 days with the addition of 10% mixing water consumption and 1:6 cement/tailing ratio tended to obtain favorable comprehensive properties such as a high compressive strength of 15.15 MPa, a… More > Graphic Abstract

    Fabrication of Baking-Free Bricks Using Gold Tailings and Cemented Materials with Low Alkalinity

  • Open Access

    ARTICLE

    Preparation of Micro-Iron Ore Tailings by Wet-Grinding and Its Application in Sulphoaluminate Cement

    Yingchun Yang1,*, Liqing Chen1, Xingdong Sun1, Yuguang Mao2

    Journal of Renewable Materials, Vol.10, No.4, pp. 1007-1023, 2022, DOI:10.32604/jrm.2022.017372 - 02 November 2021

    Abstract Herein, micro iron ore tailings (micro-IOTs) were prepared by wet-grinding and applied to improve sulphoaluminate cement (SAC) performance. The physicochemical properties of micro-IOTs were investigated by particle size analysis, XRD, and XPS. The hydrates trait and the hydration mechanism of micro-IOTs-SAC composite were studied by XRD, TGA, MIP, and SEM. The results demonstrated that micro-IOTs with an average grain diameter of 517 nm could be obtained by wet-grinding. The setting time of SAC gradually decreased with increasing micro-IOTs content. By adding 2% micro-IOTs, the compressive strengths of SAC pastes were enhanced about 22% and 10% More >

Displaying 1-10 on page 1 of 13. Per Page