Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (56)
  • Open Access

    ARTICLE

    The Effects of the Geometry of a Current Collector with an Equal Open Ratio on Output Power of a Direct Methanol Fuel Cell

    Yingli Zhu1,*, Jiachi Xie1, Mingwei Zhu1, Jun Zhang2, Miaomiao Li3

    Energy Engineering, Vol.121, No.5, pp. 1161-1172, 2024, DOI:10.32604/ee.2024.041205

    Abstract The open ratio of a current collector has a great impact on direct methanol fuel cell (DMFC) performance. Although a number of studies have investigated the influence of the open ratio of DMFC current collectors, far too little attention has been given to how geometry (including the shape and feature size of the flow field) affects a current collector with an equal open ratio. In this paper, perforated and parallel current collectors with an equal open ratio of 50% and different feature sizes are designed, and the corresponding experimental results are shown to explain the… More >

  • Open Access

    ARTICLE

    Analysis and Modeling of Time Output Characteristics for Distributed Photovoltaic and Energy Storage

    Kaicheng Liu1,3,*, Chen Liang2, Xiaoyang Dong2, Liping Liu1

    Energy Engineering, Vol.121, No.4, pp. 933-949, 2024, DOI:10.32604/ee.2023.043658

    Abstract Due to the unpredictable output characteristics of distributed photovoltaics, their integration into the grid can lead to voltage fluctuations within the regional power grid. Therefore, the development of spatial-temporal coordination and optimization control methods for distributed photovoltaics and energy storage systems is of utmost importance in various scenarios. This paper approaches the issue from the perspective of spatiotemporal forecasting of distributed photovoltaic (PV) generation and proposes a Temporal Convolutional-Long Short-Term Memory prediction model that combines Temporal Convolutional Networks (TCN) and Long Short-Term Memory (LSTM). To begin with, an analysis of the spatiotemporal distribution patterns of More >

  • Open Access

    ARTICLE

    Research on Regulation Method of Energy Storage System Based on Multi-Stage Robust Optimization

    Zaihe Yang1,*, Shuling Wang1, Runhang Zhu1, Jiao Cui2, Ji Su2, Liling Chen3

    Energy Engineering, Vol.121, No.3, pp. 807-820, 2024, DOI:10.32604/ee.2023.028167

    Abstract To address the scheduling problem involving energy storage systems and uncertain energy, we propose a method based on multi-stage robust optimization. This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method, which helps overcome the limitations of traditional methods in terms of time scale. The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day. To achieve this, a mathematical model is constructed to represent uncertain energy sources such as photovoltaic More >

  • Open Access

    ARTICLE

    An Industrial Intrusion Detection Method Based on Hybrid Convolutional Neural Networks with Improved TCN

    Zhihua Liu, Shengquan Liu*, Jian Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 411-433, 2024, DOI:10.32604/cmc.2023.046237

    Abstract Network intrusion detection systems (NIDS) based on deep learning have continued to make significant advances. However, the following challenges remain: on the one hand, simply applying only Temporal Convolutional Networks (TCNs) can lead to models that ignore the impact of network traffic features at different scales on the detection performance. On the other hand, some intrusion detection methods consider multi-scale information of traffic data, but considering only forward network traffic information can lead to deficiencies in capturing multi-scale temporal features. To address both of these issues, we propose a hybrid Convolutional Neural Network that supports… More >

  • Open Access

    ARTICLE

    Prediction and Output Estimation of Pattern Moving in Non-Newtonian Mechanical Systems Based on Probability Density Evolution

    Cheng Han1,*, Zhengguang Xu1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 515-536, 2024, DOI:10.32604/cmes.2023.043464

    Abstract A prediction framework based on the evolution of pattern motion probability density is proposed for the output prediction and estimation problem of non-Newtonian mechanical systems, assuming that the system satisfies the generalized Lipschitz condition. As a complex nonlinear system primarily governed by statistical laws rather than Newtonian mechanics, the output of non-Newtonian mechanics systems is difficult to describe through deterministic variables such as state variables, which poses difficulties in predicting and estimating the system’s output. In this article, the temporal variation of the system is described by constructing pattern category variables, which are non-deterministic variables.… More >

  • Open Access

    ARTICLE

    Analysis of Profile and Unsteady Flow Performance of Variable Base Circle Radius Scroll Expander

    Junying Wei*, Gang Li, Chenrui Zhang, Wenwen Chang, Jidai Wang

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 199-214, 2023, DOI:10.32604/fhmt.2023.041793

    Abstract To study the complex internal flow field variation and output characteristics of a variable base radius scroll expander, this paper uses dynamic mesh techniques and computational fluid dynamics (CFD) methods to perform transient numerical simulations of a variable base radius scroll expander. Analysis of the flow field in the working cavity of a variable base radius scroll expander at different spindle angles and the effect of different profiles, speeds and pressures on the output characteristics of the scroll expander. The results of the study show that due to the periodic blocking of the inlet by… More >

  • Open Access

    ARTICLE

    Computer Modelling of Compact 28/38 GHz Dual-Band Antenna for Millimeter-Wave 5G Applications

    Amit V. Patel1, Arpan Desai1, Issa Elfergani2,3,*, Hiren Mewada4, Chemseddine Zebiri5, Keyur Mahant1, Jonathan Rodriguez2, Raed Abd-Alhameed3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2867-2879, 2023, DOI:10.32604/cmes.2023.026200

    Abstract A four-element compact dual-band patch antenna having a common ground plane operating at 28/38 GHz is proposed for millimeter-wave communication systems in this paper. The multiple-input-multiple-output (MIMO) antenna geometry consists of a slotted ellipse enclosed within a hollow circle which is orthogonally rotated with a connected partial ground at the back. The overall size of the four elements MIMO antenna is 2.24λ × 2.24λ (at 27.12 GHz). The prototype of four-element MIMO resonator is designed and printed using Rogers RT Duroid 5880 with εr = 2.2 and loss tangent = 0.0009 and having a thickness of More >

  • Open Access

    ARTICLE

    DEVELOPMENT OF A HEAT PIPE AND GREY BASED TAGUCHI METHOD FOR MULTI-OUTPUT OPTIMIZATION TO IMPROVE THERMAL PERFORMANCE USING HYBRID NANOFLUIDS

    Mohammed Yunus*, Mohammad S. Alsoufi

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-8, 2019, DOI:10.5098/hmt.12.11

    Abstract Swift cooling systems, improved microprocessor chips, processors’ performance and power usage have increased production of an enormous amount of heat and high operating temperatures due to excess heat flux density in the field of microelectronics. A rapid cooling of electronic circuits and heat dissipation for the same size of pipe with the present technology as nano size circuits critically generate high heat flux beyond 100 W/cm2 is currently the challenging task with which we are presented. Cooling in the form of heat transfer should be managed using both thermal conductivity (evaporation) and phase transition (condensation)… More >

  • Open Access

    ARTICLE

    BFS-SVM Classifier for QoS and Resource Allocation in Cloud Environment

    A. Richard William1,*, J. Senthilkumar2, Y. Suresh2, V. Mohanraj2

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 777-790, 2023, DOI:10.32604/csse.2023.031753

    Abstract In cloud computing Resource allocation is a very complex task. Handling the customer demand makes the challenges of on-demand resource allocation. Many challenges are faced by conventional methods for resource allocation in order to meet the Quality of Service (QoS) requirements of users. For solving the about said problems a new method was implemented with the utility of machine learning framework of resource allocation by utilizing the cloud computing technique was taken in to an account in this research work. The accuracy in the machine learning algorithm can be improved by introducing Bat Algorithm with… More >

  • Open Access

    ARTICLE

    Distributed Robust Optimal Dispatch for the Microgrid Considering Output Correlation between Wind and Photovoltaic

    Ming Li1,*, Cairen Furifu1, Chengyang Ge2, Yunping Zheng1, Shunfu Lin2, Ronghui Liu2

    Energy Engineering, Vol.120, No.8, pp. 1775-1801, 2023, DOI:10.32604/ee.2023.027215

    Abstract As an effective carrier of integrated clean energy, the microgrid has attracted wide attention. The randomness of renewable energies such as wind and solar power output brings a significant cost and impact on the economics and reliability of microgrids. This paper proposes an optimization scheme based on the distributionally robust optimization (DRO) model for a microgrid considering solar-wind correlation. Firstly, scenarios of wind and solar power output scenarios are generated based on non-parametric kernel density estimation and the Frank-Copula function; then the generated scenario results are reduced by K-means clustering; finally, the probability confidence interval More >

Displaying 1-10 on page 1 of 56. Per Page