Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,607)
  • Open Access

    ARTICLE

    A comparative study of three domain-integral evaluation techniques in the boundary-domain integral equation method for transient thermoelastic crack analysis in FGMs

    A.V. Ekhlakov1,2, O.M. Khay1,3, Ch. Zhang1, X.W. Gao4, J. Sladek5, V. Sladek5

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.6, pp. 595-614, 2013, DOI:10.3970/cmes.2013.092.595

    Abstract A boundary-domain integral equation method is applied to the transient thermoelastic crack analysis in functionally graded materials. Fundamental solutions for homogeneous, isotropic and linear elastic materials are used to derive the boundary-domain integral equations. The radial integration method, the Cartesian transformation method and the cell-integration method are applied for the evaluation of the arising domain-integrals. Numerical results for dynamic stress intensity factors obtained by the three approaches are presented, compared and discussed to show the accuracy and the efficiency of the domain-integral evaluation techniques. More >

  • Open Access

    ARTICLE

    Coupled PIEM/FEM Algorithm Based on Mindlin-Reissner Plate Theory for Bending Analysis of Plates with Through-Thickness Hole

    De-Shin Liu1, Chin-Yi Tu1, Cho-Liang Chung2

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.6, pp. 573-594, 2013, DOI:10.3970/cmes.2013.092.573

    Abstract The Infinite Element Method (IEM) is widely used for the analysis of elastostatic structures containing singularities. In the IEM method, the problem domain is partitioned into multiple element layers, where the stiffness matrix of each layer is similar to that of the other layers in the discretized domain. However, in Mindlin-Reissner plate theory, the stiffness matrix varies through the layers of the plate, and thus the conventional IEM algorithm cannot be applied. Accordingly, the present study proposes a Plate Infinite Element Method (PIEM) in which the element stiffness matrix is separated into two sub-matrices; each being similar to the equivalent… More >

  • Open Access

    REVIEW

    Applications of the MLPG Method in Engineering & Sciences: A Review

    J. Sladek1, P. Stanak1, Z-D. Han2, V. Sladek1, S.N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.5, pp. 423-475, 2013, DOI:10.3970/cmes.2013.092.423

    Abstract A review is presented for analysis of problems in engineering & the sciences, with the use of the meshless local Petrov-Galerkin (MLPG) method. The success of the meshless methods lie in the local nature, as well as higher order continuity, of the trial function approximations, high adaptivity and a low cost to prepare input data for numerical analyses, since the creation of a finite element mesh is not required. There is a broad variety of meshless methods available today; however the focus is placed on the MLPG method, in this paper. The MLPG method is a fundamental base for the… More >

  • Open Access

    ARTICLE

    Computer Modeling Chemical Vapor Infiltration of SiC Composites

    Yaochan Zhu1, Eckart Schnack1, Al Mahmudur Rahman1

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.3, pp. 315-326, 2013, DOI:10.32604/cmes.2013.092.315

    Abstract A novel multiphase field model is formulated to simulate the complex microstructure evolution during chemical vapor infiltration (CVI) process, which is widely used technique to produce SiC matrix composites reinforced by SiC fibers in ceramic engineer. The model consists of a set of nonlinear partial differential equations by coupling Ginzburg-Landau type phase field equations with mass/heat balance equations as well as modified Navier-Stokes equations. The microstructure evolution of preferential codeposition of Si, SiC and C under high ratio of H2 to MTS is simulated. The simulation is in good agreement with experiments result. The potential risk of blockage of the… More >

  • Open Access

    ARTICLE

    Modeling Imperfect Interfaces in the Material Point Method using Multimaterial Methods

    J. A. Nairn1

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.3, pp. 271-299, 2013, DOI:10.32604/cmes.2013.092.271

    Abstract The “multimaterial” version of the material point method (MPM) extrapolates each material to its own velocity field on a background grid. By reconciling momenta on nodes interacting with two or more materials, MPM is able to automatically handle contact without any need for special contact elements. This paper extends multimaterial MPM to automatically handle imperfect interfaces between materials as well. The approach is to evaluate displacement discontinuity on multimaterial nodes and then add internal forces and interfacial energy determined by an imperfect interface traction law. The concept is simple, but implementation required numerous corrections to make the analysis mesh independent,… More >

  • Open Access

    ARTICLE

    Simulation Study on the Acoustic Field from Linear Phased Array Ultrasonic Transducer for Engine Cylinder Testing

    Xiaoxia Yang1, Shili Chen1, Fang Sun1, Shijiu Jin1, Wenshuang Chang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.90, No.6, pp. 487-500, 2013, DOI:10.3970/cmes.2013.090.487

    Abstract Ultrasonic phased array inspection technology is widely used in nondestructive evaluation (NDE) applications and it has been proved to be an effective method for flaw detections in industry. In our study, this nondestructive evaluation method is proposed to detect the corrosion defects on engine cylinders. In order to demonstrate its feasibility, it is necessary to study the characteristics of the acoustic field produced by a linear phased array ultrasonic transducer in the engine cylinders. In this paper, according to multi-Gaussian beam model and ray acoustics theory, we derive the expression of the acoustic field from a linear phased array ultrasonic… More >

  • Open Access

    ARTICLE

    RBF-Based Multiscale Control Volume Method for Second Order Elliptic Problems with Oscillatory Coefficients

    D.-A. An-Vo1, C.-D. Tran1, N. Mai-Duy1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.4, pp. 303-359, 2012, DOI:10.3970/cmes.2012.089.303

    Abstract Many important engineering problems have multiple-scale solutions. Thermal conductivity of composite materials, flow in porous media, and turbulent transport in high Reynolds number flows are examples of this type. Direct numerical simulations for these problems typically require extremely large amounts of CPU time and computer memory, which may be too expensive or impossible on the present supercomputers. In this paper, we develop a high order computational method, based on multiscale basis function approach and integrated radialbasis- function (IRBF) approximant, for the solution of multiscale elliptic problems with reduced computational cost. Unlike other methods based on multiscale basis function approach, sets… More >

  • Open Access

    ARTICLE

    On the Use of PEBI Grids in the Numerical Simulations of Two-Phase Flows in Fractured Horizontal Wells

    Yongsheng An1, Xiaodong Wu1, Deli Gao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.2, pp. 123-142, 2012, DOI:10.3970/cmes.2012.089.123

    Abstract The accuracy of numerical simulation of a two-phase (oil and water) flow in a fractured horizontal well depends greatly upon the types of grids used in the computation. Cartesian grids have been widely used in recent years, but they have some disadvantages in describing complex structural wells, such as fractured horizontal wells. For example, Cartesian grids are not efficient in describing the main wellbores and the fractures of fractured horizontal wells, and the results can frequently suffer from grid orientation effects, even though a grid-refinement is often introduced to enhance the adaptability of a Cartesian grid. The PEBI (Perpendicular Bisector)… More >

  • Open Access

    ARTICLE

    Distribution of the Sizes of Rock Cuttings in Gas Drilling At Various Depths

    Jun Li1, Shunji Yang1, Boyun Guo1,2, Yin Feng2, Gonghui Liu1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.2, pp. 79-96, 2012, DOI:10.3970/cmes.2012.089.079

    Abstract In the process of gas drilling, the mechanism of transport of the cuttings up the annulus is significant, because it controls the minimum amount of volume of the required gas, the cost of cleaning the borehole, the stability of the borewell and the drill pipe erosion, etc. However, current studies in this area are only limited to theoretical discussions. The reason why drill cuttings are of very fine sizes , in air drilling, is believed to be due to the repeated crushing action of drill bit at the bottom of the hole, and the collision between cuttings themselves and the… More >

  • Open Access

    ARTICLE

    Hygrothermal Loading Effects in Bending Analysis of Multilayered Composite Plates

    S. Brischetto1

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.5, pp. 367-418, 2012, DOI:10.3970/cmes.2012.088.367

    Abstract The paper analyzes the hygrothermal loading effects in the bending of multilayered composite plates. Refined two-dimensional models are used to evaluate these effects, they are implemented in the framework of the Carrera's Unified Formulation (CUF) which also allows classical models to be obtained. Hygroscopic and thermal effects are evaluated by means of hygroscopic and thermal load applications, respectively. Such loads can be determined via a priori linear or constant moisture content and temperature profiles through the thickness of the plate, or by calculating them via the solution of the Fick moisture diffusion law and the Fourier heat conduction equation, respectively.… More >

Displaying 1401-1410 on page 141 of 1607. Per Page