Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    REVIEW

    A Comprehensive Overview and Comparative Analysis on Deep Learning Models

    Farhad Mortezapour Shiri*, Thinagaran Perumal, Norwati Mustapha, Raihani Mohamed

    Journal on Artificial Intelligence, Vol.6, pp. 301-360, 2024, DOI:10.32604/jai.2024.054314 - 20 November 2024

    Abstract Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and artificial intelligence (AI), outperforming traditional ML methods, especially in handling unstructured and large datasets. Its impact spans across various domains, including speech recognition, healthcare, autonomous vehicles, cybersecurity, predictive analytics, and more. However, the complexity and dynamic nature of real-world problems present challenges in designing effective deep learning models. Consequently, several deep learning models have been developed to address different problems and applications. In this article, we conduct a comprehensive survey of various deep learning models, including Convolutional Neural Network (CNN), Recurrent… More >

  • Open Access

    ARTICLE

    A Combined Method of Temporal Convolutional Mechanism and Wavelet Decomposition for State Estimation of Photovoltaic Power Plants

    Shaoxiong Wu1, Ruoxin Li1, Xiaofeng Tao1, Hailong Wu1,*, Ping Miao1, Yang Lu1, Yanyan Lu1, Qi Liu2, Li Pan2

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3063-3077, 2024, DOI:10.32604/cmc.2024.055381 - 18 November 2024

    Abstract Time series prediction has always been an important problem in the field of machine learning. Among them, power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies. Traditional power load forecasting often has poor feature extraction performance for long time series. In this paper, a new deep learning framework Residual Stacked Temporal Long Short-Term Memory (RST-LSTM) is proposed, which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences. The network framework of RST-LSTM consists of two More >

  • Open Access

    ARTICLE

    Re-Distributing Facial Features for Engagement Prediction with ModernTCN

    Xi Li1,2, Weiwei Zhu2, Qian Li3,*, Changhui Hou1,*, Yaozong Zhang1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 369-391, 2024, DOI:10.32604/cmc.2024.054982 - 15 October 2024

    Abstract Automatically detecting learners’ engagement levels helps to develop more effective online teaching and assessment programs, allowing teachers to provide timely feedback and make personalized adjustments based on students’ needs to enhance teaching effectiveness. Traditional approaches mainly rely on single-frame multimodal facial spatial information, neglecting temporal emotional and behavioural features, with accuracy affected by significant pose variations. Additionally, convolutional padding can erode feature maps, affecting feature extraction’s representational capacity. To address these issues, we propose a hybrid neural network architecture, the redistributing facial features and temporal convolutional network (RefEIP). This network consists of three key components:… More >

  • Open Access

    ARTICLE

    PAL-BERT: An Improved Question Answering Model

    Wenfeng Zheng1, Siyu Lu1, Zhuohang Cai1, Ruiyang Wang1, Lei Wang2, Lirong Yin2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2729-2745, 2024, DOI:10.32604/cmes.2023.046692 - 11 March 2024

    Abstract In the field of natural language processing (NLP), there have been various pre-training language models in recent years, with question answering systems gaining significant attention. However, as algorithms, data, and computing power advance, the issue of increasingly larger models and a growing number of parameters has surfaced. Consequently, model training has become more costly and less efficient. To enhance the efficiency and accuracy of the training process while reducing the model volume, this paper proposes a first-order pruning model PAL-BERT based on the ALBERT model according to the characteristics of question-answering (QA) system and language More >

  • Open Access

    ARTICLE

    A Time Series Intrusion Detection Method Based on SSAE, TCN and Bi-LSTM

    Zhenxiang He*, Xunxi Wang, Chunwei Li

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 845-871, 2024, DOI:10.32604/cmc.2023.046607 - 30 January 2024

    Abstract In the fast-evolving landscape of digital networks, the incidence of network intrusions has escalated alarmingly. Simultaneously, the crucial role of time series data in intrusion detection remains largely underappreciated, with most systems failing to capture the time-bound nuances of network traffic. This leads to compromised detection accuracy and overlooked temporal patterns. Addressing this gap, we introduce a novel SSAE-TCN-BiLSTM (STL) model that integrates time series analysis, significantly enhancing detection capabilities. Our approach reduces feature dimensionality with a Stacked Sparse Autoencoder (SSAE) and extracts temporally relevant features through a Temporal Convolutional Network (TCN) and Bidirectional Long… More >

  • Open Access

    ARTICLE

    An Industrial Intrusion Detection Method Based on Hybrid Convolutional Neural Networks with Improved TCN

    Zhihua Liu, Shengquan Liu*, Jian Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 411-433, 2024, DOI:10.32604/cmc.2023.046237 - 30 January 2024

    Abstract Network intrusion detection systems (NIDS) based on deep learning have continued to make significant advances. However, the following challenges remain: on the one hand, simply applying only Temporal Convolutional Networks (TCNs) can lead to models that ignore the impact of network traffic features at different scales on the detection performance. On the other hand, some intrusion detection methods consider multi-scale information of traffic data, but considering only forward network traffic information can lead to deficiencies in capturing multi-scale temporal features. To address both of these issues, we propose a hybrid Convolutional Neural Network that supports… More >

  • Open Access

    ARTICLE

    Outage Probability Analysis for D2D-Enabled Heterogeneous Cellular Networks with Exclusion Zone: A Stochastic Geometry Approach

    Yulei Wang1, Li Feng1,*, Shumin Yao1,2, Hong Liang1, Haoxu Shi1, Yuqiang Chen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 639-661, 2024, DOI:10.32604/cmes.2023.029565 - 22 September 2023

    Abstract Interference management is one of the most important issues in the device-to-device (D2D)-enabled heterogeneous cellular networks (HetCNets) due to the coexistence of massive cellular and D2D devices in which D2D devices reuse the cellular spectrum. To alleviate the interference, an efficient interference management way is to set exclusion zones around the cellular receivers. In this paper, we adopt a stochastic geometry approach to analyze the outage probabilities of cellular and D2D users in the D2D-enabled HetCNets. The main difficulties contain three aspects: 1) how to model the location randomness of base stations, cellular and D2D More >

  • Open Access

    ARTICLE

    A Spatio-Temporal Heterogeneity Data Accuracy Detection Method Fused by GCN and TCN

    Tao Liu1, Kejia Zhang1,*, Jingsong Yin1, Yan Zhang1, Zihao Mu1, Chunsheng Li1, Yanan Hu2

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2563-2582, 2023, DOI:10.32604/csse.2023.041228 - 28 July 2023

    Abstract Spatio-temporal heterogeneous data is the database for decision-making in many fields, and checking its accuracy can provide data support for making decisions. Due to the randomness, complexity, global and local correlation of spatiotemporal heterogeneous data in the temporal and spatial dimensions, traditional detection methods can not guarantee both detection speed and accuracy. Therefore, this article proposes a method for detecting the accuracy of spatiotemporal heterogeneous data by fusing graph convolution and temporal convolution networks. Firstly, the geographic weighting function is introduced and improved to quantify the degree of association between nodes and calculate the weighted… More >

  • Open Access

    ARTICLE

    A Method of Multimodal Emotion Recognition in Video Learning Based on Knowledge Enhancement

    Hanmin Ye1,2, Yinghui Zhou1, Xiaomei Tao3,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1709-1732, 2023, DOI:10.32604/csse.2023.039186 - 28 July 2023

    Abstract With the popularity of online learning and due to the significant influence of emotion on the learning effect, more and more researches focus on emotion recognition in online learning. Most of the current research uses the comments of the learning platform or the learner’s expression for emotion recognition. The research data on other modalities are scarce. Most of the studies also ignore the impact of instructional videos on learners and the guidance of knowledge on data. Because of the need for other modal research data, we construct a synchronous multimodal data set for analyzing learners’… More >

  • Open Access

    ARTICLE

    3D Human Pose Estimation Using Two-Stream Architecture with Joint Training

    Jian Kang1, Wanshu Fan1, Yijing Li2, Rui Liu1, Dongsheng Zhou1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 607-629, 2023, DOI:10.32604/cmes.2023.024420 - 23 April 2023

    Abstract With the advancement of image sensing technology, estimating 3D human pose from monocular video has become a hot research topic in computer vision. 3D human pose estimation is an essential prerequisite for subsequent action analysis and understanding. It empowers a wide spectrum of potential applications in various areas, such as intelligent transportation, human-computer interaction, and medical rehabilitation. Currently, some methods for 3D human pose estimation in monocular video employ temporal convolutional network (TCN) to extract inter-frame feature relationships, but the majority of them suffer from insufficient inter-frame feature relationship extractions. In this paper, we decompose… More >

Displaying 1-10 on page 1 of 13. Per Page