Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    PROCEEDINGS

    Over-Deterministic Method and Its Application in Fracture Mechanics

    Cheng Hou1, Xiaochao Jin2, Xueling Fan2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012325

    Abstract The over-deterministic method (ODM) is dedicated to calculate a small set of unknown coefficients from a large system of equations, by making use of a large number of data points. A displacement over-deterministic method (DODM) developed by Ayatollahi et al. [1] has been employed by for calculating the stress intensity factors (SIFs) as well as the coefficients of the higher-order terms in the Williams’ series expansions for cracked bodies. The ODM provides a great idea to easily obtain fracture parameters, combine with finite element method (FEM).
    In our work, a stress over-deterministic method (SODM) has been… More >

  • Open Access

    ARTICLE

    Effect of Algae on Melon (Cucumis melo subsp. agrestis var. conomon) Growth and Development under Drought-Stress Conditions

    M. Zeki KARİPÇİN1, Behcet İNAL2,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.11, pp. 3177-3193, 2023, DOI:10.32604/phyton.2023.030979 - 24 October 2023

    Abstract Due to climate change, it is necessary to develop plant varieties that are resilient to climate conditions and resistant to abiotic and biotic stresses. The use of microalgae, which are microorganisms that contain carbohydrates, proteins, lipids, and vitamins, against drought tolerance is a new approach. The aim of the current study was to determine the drought-related mechanisms in the conomon melon genotype and develop drought-tolerant melon cultivars. Morphological, physiological, pomological, and molecular analyses were carried out on the algae-treated genotypes. It has been determined that commercial algae application provides the best results in leaf temperature,… More >

  • Open Access

    ARTICLE

    Transcriptome Profiling of the Salt-Stress Response in Paper Mulberry

    Jie Zhang1, Yingwei Zhao2, Hongying Li3, Jianwei Ni4,*, Dongmei Wang1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.9, pp. 2591-2610, 2023, DOI:10.32604/phyton.2023.028338 - 28 July 2023

    Abstract Paper mulberry is a high-quality woody feed resource plant with high crude protein content. It is widely distributed in China and has excellent characteristics of salt and alkali tolerance. Paper mulberry has ecological and economic importance. Salt stress has become a critical factor with the increasing degree of soil salinity that restricts plant growth. In the saline-alkali environments, transcriptome expression is altered leading to phenotypic defects in most plants. However, the regulatory mechanism related to paper mulberry’s salt-stress (SS) response is not clearly understood. In the present study de novo transcriptomic assembly was performed, and gene… More >

  • Open Access

    ARTICLE

    Comparative Transcriptome Analysis of Salt-Stress-Responsive Genes in Rice Roots

    Rui Song1, Yan Huang2, Xin Ji3, Yunfei Wei3, Qiuyuan Liu3, Shumei Li3, Juan Liu3,*, Pengfei Dong1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.1, pp. 237-250, 2023, DOI:10.32604/phyton.2022.023081 - 06 September 2022

    Abstract Soil salinity greatly impairs plant growth and crop productivity. Rice (Oryza sativa L.) is a salt-sensitive crop. To better understand the molecular mechanisms of salt tolerance in roots, the BGISEQ-500 sequencing platform was employed to elucidate transcriptome changes in rice roots after 0, 3, 24, and 72 h of salt stress. The results showed that root K+ content decreased and Na+ content increased rapidly after the initial stage of salt stress, but that fresh and dry weight in root did not significantly reduce. Compared to the control (no salt stress), 1,292, 453, and 486 differentially… More >

  • Open Access

    ABSTRACT

    Evaluation of T-Stress for an Interface Crack Lying Between Dissimilar Anisotropic Solids Using BEM

    P.D. Shah1, C.L. Tan1, X. Wang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.1, No.2, pp. 75-80, 2007, DOI:10.3970/icces.2007.001.075

    Abstract The path-independent mutual- or M-integral for the computation of the T-stress for interface cracks lying between dissimilar anisotropic, linear elastic solids is developed in this paper. For the numerical stress analysis, the Boundary Element Method (BEM) is employed and special crack-tip elements with the proper oscillatory traction singularity are used. The successful implementation of the scheme for evaluating the T-stress of an interface crack between anisotropic bi-materials with BEM is demonstrated by numerical examples. More >

  • Open Access

    ARTICLE

    Numerical Evaluation of T-stress Solutions for Cracks in Plane Anisotropic Bodies

    P.D. Shah1, Ch. Song2, C.L. Tan1, X. Wang1

    Structural Durability & Health Monitoring, Vol.2, No.4, pp. 225-238, 2006, DOI:10.3970/sdhm.2006.002.225

    Abstract Numerical T-stress solutions in two dimensional anisotropic cracked bodies are very scarce in the literature. Schemes to evaluate this fracture parameter in anisotropy have been reported only fairly recently. Among them are those developed in conjunction with two different computational techniques, namely, the Boundary Element Method (BEM) and the Scaled Boundary Finite-Element Method (SBFEM). This paper provides a review of the respective schemes using these techniques and demonstrates their efficacy with three examples. These examples, which are of engineering importance, involve cracks lying in a homogeneous medium as well as at the interface between dissimilar media. More >

  • Open Access

    ARTICLE

    Evaluation of T-stress for An Interface Crack between Dissimilar Anisotropic Materials Using the Boundary Element Method

    P.D. Shah1, C.L. Tan1,2, X. Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.3, pp. 185-198, 2006, DOI:10.3970/cmes.2006.013.185

    Abstract In this paper, the path independent mutual or M-integral for the computation of the T-stress for interface cracks between dissimilar anisotropic, linear elastic solids, is developed. The required auxiliary field solution is derived from the solution of the problem of an anisotropic composite wedge subjected to a point force at its apex. The Boundary Element Method (BEM) is employed for the numerical stress analysis in which special crack-tip elements with the proper oscillatory traction singularity are used. The successful implementation of the procedure for evaluating the T-stress in a bi-material interface crack and its application are demonstrated More >

Displaying 1-10 on page 1 of 7. Per Page