Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Enhancing the Efficiency of Multi-Electrolyzer Clusters with Lye Mixer: Topology Design and Control Strategy

    Mingxuan Chen1, Jun Jia2, Baoping Zhang1, Leiyan Han3, Mengbo Ji3,4, Zhangtao Yu1, Dongfang Li1, Wenyong Wang1, Hongjing Jia1, Huachi Xu2,*

    Energy Engineering, Vol.121, No.10, pp. 3055-3074, 2024, DOI:10.32604/ee.2024.051524 - 11 September 2024

    Abstract The rise in hydrogen production powered by renewable energy is driving the field toward the adoption of systems comprising multiple alkaline water electrolyzers. These setups present various operational modes: independent operation and multi-electrolyzer parallelization, each with distinct advantages and challenges. This study introduces an innovative configuration that incorporates a mutual lye mixer among electrolyzers, establishing a weakly coupled system that combines the advantages of two modes. This approach enables efficient heat utilization for faster hot-startup and maintains heat conservation post-lye interconnection, while preserving the option for independent operation after decoupling. A specialized thermal exchange model… More >

  • Open Access

    ARTICLE

    A Novel Framework to Construct S-Box Quantum Circuits Using System Modeling: Application to 4-Bit S-Boxes

    Yongjin Jeon, Seungjun Baek#, Jongsung Kim*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 545-561, 2024, DOI:10.32604/cmes.2024.052374 - 20 August 2024

    Abstract Quantum computers accelerate many algorithms based on the superposition principle of quantum mechanics. The Grover algorithm provides significant performance to malicious users attacking symmetric key systems. Since the performance of attacks using quantum computers depends on the efficiency of the quantum circuit of the encryption algorithms, research research on the implementation of quantum circuits is essential. This paper presents a new framework to construct quantum circuits of substitution boxes (S-boxes) using system modeling. We model the quantum circuits of S-boxes using two layers: Toffoli and linear layers. We generate vector spaces based on the values… More >

  • Open Access

    ARTICLE

    Identification of Type of a Fault in Distribution System Using Shallow Neural Network with Distributed Generation

    Saurabh Awasthi*, Gagan Singh, Nafees Ahamad

    Energy Engineering, Vol.120, No.4, pp. 811-829, 2023, DOI:10.32604/ee.2023.026863 - 13 February 2023

    Abstract A distributed generation system (DG) has several benefits over a traditional centralized power system. However, the protection area in the case of the distributed generator requires special attention as it encounters stability loss, failure re-closure, fluctuations in voltage, etc. And thereby, it demands immediate attention in identifying the location & type of a fault without delay especially when occurred in a small, distributed generation system, as it would adversely affect the overall system and its operation. In the past, several methods were proposed for classification and localisation of a fault in a distributed generation system.… More >

  • Open Access

    ARTICLE

    Requirement Design for Software Configuration and System Modeling

    Waqar Mehmood1, Abdul Waheed Khan2, Waqar Aslam3, Shafiq Ahmad4, Ahmed M. El-Sherbeeny4, Muhammad Shafiq5,*

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 441-454, 2022, DOI:10.32604/iasc.2022.016116 - 26 October 2021

    Abstract Software Configuration Management (SCM) aims to control the development of complex software systems. Traditional SCM systems treat text files as central artifacts, so they are mainly developed for source code. Such a system is not suitable for model-based software development with model-centric artifacts. When applying traditional systems to model-based software development, new challenges such as model mapping, differentiation, and merging arise. Many existing methods mainly use UML or domain-specific languages to determine model differences. However, as far as we know, there is no such technology for System Modeling Language (SysML) models. SysML covers the entire… More >

  • Open Access

    ARTICLE

    Empirically Modeling Enterprise Architecture Using ArchiMate

    Qiang Zhi1,*, Zhengshu Zhou2,3

    Computer Systems Science and Engineering, Vol.40, No.1, pp. 357-374, 2022, DOI:10.32604/csse.2022.018759 - 26 August 2021

    Abstract Enterprise Architecture (EA) has evolved based on the practice of information systems architecture design and implementation. EA is a rigorous description of a structure, and the objectives of EA modeling not only include clarifying corporate strategies, visualizing business processes, and modeling information systems to manage resources but also include improving organizational structures, adjusting information strategies, and creating new business value. Therefore, EA models cover a wide scope that includes both IT and business architectures. Typically, EA modeling is the initial and most important analysis step for researchers, architects, and developers. ArchiMate is the dominant modeling… More >

  • Open Access

    ARTICLE

    Modeling of Canonical Switching Cell Converter Using Genetic Algorithm

    T. V. Viknesh1, V. Manik,an

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.1, pp. 109-116, 2017, DOI:10.3970/cmes.2017.113.107

    Abstract The working of Canonical switching cell (CSC) converter was studied and its equivalent circuit during ON and OFF states were obtained. State space model of CSC converter in ON and OFF states were developed using the Kirchhoff laws. The state space matrices were used to construct the transfer functions of ON & OFF states. The step response of the converter was simulated using MATLAB. The step response curve was obtained using different values of circuit components (L, C1, C2 and RL)and optimized. The characteristic parameters such as rise time, overshoot, settling time, steady state error… More >

  • Open Access

    ARTICLE

    In virtuo Experiments Based on the Multi-Interaction System Framework: the RéISCOP Meta-Model.

    G. Desmeulles, S. Bonneaud, P. Redou>, V. Rodin, J. Tisseau

    CMES-Computer Modeling in Engineering & Sciences, Vol.47, No.3, pp. 299-330, 2009, DOI:10.3970/cmes.2009.047.299

    Abstract Virtual reality can enable computer scientists and domain experts to perform in virtuo experiments of numerical models of complex systems. Such dynamical and interactive experiments are indeed needed when it comes to complex systems with complex dynamics and structures. In this context, the question of the modeling tool to study such models is crucial. Such tool, called a virtuoscope, must enable the virtual experimentation of models inside a conceptual and experimental framework for imagining, modeling and experimenting the complexity of the studied systems. This article describes a conceptual framework and a meta model, called RéISCOP, that enable More >

Displaying 1-10 on page 1 of 7. Per Page