Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Neural Architecture Search via Hierarchical Evaluation of Surrogate Models

    Xiaofeng Liu*, Yubin Bao, Fangling Leng

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3503-3517, 2025, DOI:10.32604/cmc.2025.064544 - 03 July 2025

    Abstract The rapid development of evolutionary deep learning has led to the emergence of various Neural Architecture Search (NAS) algorithms designed to optimize neural network structures. However, these algorithms often face significant computational costs due to the time-consuming process of training neural networks and evaluating their performance. Traditional NAS approaches, which rely on exhaustive evaluations and large training datasets, are inefficient for solving complex image classification tasks within limited time frames. To address these challenges, this paper proposes a novel NAS algorithm that integrates a hierarchical evaluation strategy based on Surrogate models, specifically using supernet to… More >

  • Open Access

    ARTICLE

    Structural Optimization of Metal and Polymer Ore Conveyor Belt Rollers

    João Pedro Ceniz, Rodrigo de Sá Martins, Marco Antonio Luersen*, Tiago Cousseau

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.3, pp. 601-618, 2022, DOI:10.32604/cmes.2022.021011 - 03 August 2022

    Abstract Ore conveyor belt rollers operate in harsh environments, making them prone to premature failure. Their service lives are highly dependent on the stress field and bearing misalignment angle, for which limit values are defined in a standard. In this work, an optimization methodology using metamodels based on radial basis functions is implemented to reduce the mass of two models of rollers. From a structural point of view, one of the rollers is made completely of metal, while the other also has some components made of polymeric material. The objective of this study is to develop… More >

  • Open Access

    ARTICLE

    A Non-probabilistic Reliability-based Optimization of Structures Using Convex Models

    Fangyi Li1,2, Zhen Luo3, Jianhua Rong1, Lin Hu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.6, pp. 453-482, 2013, DOI:10.3970/cmes.2013.095.453

    Abstract This paper aims to propose a non-probabilistic reliability-based multiobjective optimization method for structures with uncertain-but-bounded parameters. A combination of the interval and ellipsoid convex models is used to account for the different groups of uncertain parameters, in which the interval model accounts for uncorrelated parameters, while the ellipsoid model is applied to correlated parameters. The design is then formulated as a nested double-loop optimization problem. A multi-objective genetic algorithm is used in the out loop optimization to optimize the design vector for evaluating the objectives, and the Sequential Quadratic Programming (SQP) algorithm is applied in… More >

Displaying 1-10 on page 1 of 3. Per Page