Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    ARTICLE

    Structural Health Monitoring by Accelerometric Data of a Continuously Monitored Structure with Induced Damages

    Giada Faraco, Andrea Vincenzo De Nunzio, Nicola Ivan Giannoccaro*, Arcangelo Messina

    Structural Durability & Health Monitoring, Vol.18, No.6, pp. 739-762, 2024, DOI:10.32604/sdhm.2024.052663 - 20 September 2024

    Abstract The possibility of determining the integrity of a real structure subjected to non-invasive and non-destructive monitoring, such as that carried out by a series of accelerometers placed on the structure, is certainly a goal of extreme and current interest. In the present work, the results obtained from the processing of experimental data of a real structure are shown. The analyzed structure is a lattice structure approximately 9 m high, monitored with 18 uniaxial accelerometers positioned in pairs on 9 different levels. The data used refer to continuous monitoring that lasted for a total of 1… More >

  • Open Access

    ARTICLE

    Multiscale and Auto-Tuned Semi-Supervised Deep Subspace Clustering and Its Application in Brain Tumor Clustering

    Zhenyu Qian1, Yizhang Jiang1, Zhou Hong1, Lijun Huang2, Fengda Li3, KhinWee Lai6, Kaijian Xia4,5,6,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4741-4762, 2024, DOI:10.32604/cmc.2024.050920 - 20 June 2024

    Abstract In this paper, we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering (MAS-DSC) algorithm, aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world data, particularly in the field of medical imaging. Traditional deep subspace clustering algorithms, which are mostly unsupervised, are limited in their ability to effectively utilize the inherent prior knowledge in medical images. Our MAS-DSC algorithm incorporates a semi-supervised learning framework that uses a small amount of labeled data to guide the clustering process, thereby enhancing the discriminative power of the feature representations. Additionally, the multi-scale feature extraction… More > Graphic Abstract

    Multiscale and Auto-Tuned Semi-Supervised Deep Subspace Clustering and Its Application in Brain Tumor Clustering

  • Open Access

    ARTICLE

    Contrastive Consistency and Attentive Complementarity for Deep Multi-View Subspace Clustering

    Jiao Wang, Bin Wu*, Hongying Zhang

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 143-160, 2024, DOI:10.32604/cmc.2023.046011 - 25 April 2024

    Abstract Deep multi-view subspace clustering (DMVSC) based on self-expression has attracted increasing attention due to its outstanding performance and nonlinear application. However, most existing methods neglect that view-private meaningless information or noise may interfere with the learning of self-expression, which may lead to the degeneration of clustering performance. In this paper, we propose a novel framework of Contrastive Consistency and Attentive Complementarity (CCAC) for DMVsSC. CCAC aligns all the self-expressions of multiple views and fuses them based on their discrimination, so that it can effectively explore consistent and complementary information for achieving precise clustering. Specifically, the More >

  • Open Access

    ARTICLE

    CNN Based Features Extraction and Selection Using EPO Optimizer for Cotton Leaf Diseases Classification

    Mehwish Zafar1, Javeria Amin2, Muhammad Sharif1, Muhammad Almas Anjum3, Seifedine Kadry4,5,6, Jungeun Kim7,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2779-2793, 2023, DOI:10.32604/cmc.2023.035860 - 08 October 2023

    Abstract Worldwide cotton is the most profitable cash crop. Each year the production of this crop suffers because of several diseases. At an early stage, computerized methods are used for disease detection that may reduce the loss in the production of cotton. Although several methods are proposed for the detection of cotton diseases, however, still there are limitations because of low-quality images, size, shape, variations in orientation, and complex background. Due to these factors, there is a need for novel methods for features extraction/selection for the accurate cotton disease classification. Therefore in this research, an optimized… More >

  • Open Access

    ARTICLE

    An Improved Soft Subspace Clustering Algorithm for Brain MR Image Segmentation

    Lei Ling1, Lijun Huang2, Jie Wang2, Li Zhang2, Yue Wu2, Yizhang Jiang1, Kaijian Xia2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2353-2379, 2023, DOI:10.32604/cmes.2023.028828 - 03 August 2023

    Abstract In recent years, the soft subspace clustering algorithm has shown good results for high-dimensional data, which can assign different weights to each cluster class and use weights to measure the contribution of each dimension in various features. The enhanced soft subspace clustering algorithm combines interclass separation and intraclass tightness information, which has strong results for image segmentation, but the clustering algorithm is vulnerable to noisy data and dependence on the initialized clustering center. However, the clustering algorithm is susceptible to the influence of noisy data and reliance on initialized clustering centers and falls into a… More >

  • Open Access

    REVIEW

    Subspace Clustering in High-Dimensional Data Streams: A Systematic Literature Review

    Nur Laila Ab Ghani1,2,*, Izzatdin Abdul Aziz1,2, Said Jadid AbdulKadir1,2

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4649-4668, 2023, DOI:10.32604/cmc.2023.035987 - 31 March 2023

    Abstract Clustering high dimensional data is challenging as data dimensionality increases the distance between data points, resulting in sparse regions that degrade clustering performance. Subspace clustering is a common approach for processing high-dimensional data by finding relevant features for each cluster in the data space. Subspace clustering methods extend traditional clustering to account for the constraints imposed by data streams. Data streams are not only high-dimensional, but also unbounded and evolving. This necessitates the development of subspace clustering algorithms that can handle high dimensionality and adapt to the unique characteristics of data streams. Although many articles… More >

  • Open Access

    ARTICLE

    Unsupervised Domain Adaptation Based on Discriminative Subspace Learning for Cross-Project Defect Prediction

    Ying Sun1, Yanfei Sun1,2,*, Jin Qi1, Fei Wu1, Xiao-Yuan Jing1,3, Yu Xue4, Zixin Shen5

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3373-3389, 2021, DOI:10.32604/cmc.2021.016539 - 06 May 2021

    Abstract Cross-project defect prediction (CPDP) aims to predict the defects on target project by using a prediction model built on source projects. The main problem in CPDP is the huge distribution gap between the source project and the target project, which prevents the prediction model from performing well. Most existing methods overlook the class discrimination of the learned features. Seeking an effective transferable model from the source project to the target project for CPDP is challenging. In this paper, we propose an unsupervised domain adaptation based on the discriminative subspace learning (DSL) approach for CPDP. DSL… More >

  • Open Access

    ABSTRACT

    Multiscale Topology Optimization using Subspace-based Model Reduction Method

    Yuan Zhu1, 2, Xin Ning1, 2, Yao Zhang1, 2, Yuwan Yin1, 2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 11-12, 2021, DOI:10.32604/icces.2021.08311

    Abstract High performance of the spacecraft structure is required in the special environment, it includes mechanical performance and operational performance, etc. When performing tasks, the spaceborne equipment requires high precision. Therefore, the design of lightweight, high stability and high reliability structure is essential for spacecraft. Topology optimization is widely used in structural design. However, there are some problems in the structure after macro topology optimization, such as checkerboard, local optimal solution and other phenomena. Despite a long calculation period, the obtained structure is often not smooth enough and hard to manufacture. Aiming to this issue, this… More >

  • Open Access

    ARTICLE

    Research on the Influencing Rules of Gas Hydrate Emission Dissipation Coefficient Based on Subspace Spectrum Clustering

    Geng Guo1,*, Leiwen Chen1, Ji Li2, Shu Yan3, Wenxiang Wu4, Lingxu Li5, Hongda Li6

    Energy Engineering, Vol.117, No.2, pp. 79-88, 2020, DOI:10.32604/EE.2020.010529 - 23 April 2020

    Abstract Featured by high energy density, low combustion pollution and large quantity, natural gas hydrate has become one of the research hotspots in Sanlutian Field of Muri Coalfield since 2008, when China first drilled natural gas hydrate samples in the permafrost area of Qilian Mountains, Qinghai-Tibet Plateau. However, the study on the controlling factors of gas hydrate accumulation is still shallow, which hinders the exploration and development of natural gas hydrate resources. The controlling factors of gas hydrate accumulation mainly include temperature and pressure conditions, gas source conditions, sedimentary conditions and structural conditions, among which structural More >

  • Open Access

    ABSTRACT

    Investigation of Block Krylov Subspace Methods with Dummy Right-Hand Sides for Solving Linear Systems Obtained By Extended Element-Free Galerkin Method

    Taku Itoh1,*, Soichiro Ikuno2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.2, pp. 44-44, 2019, DOI:10.32604/icces.2019.05521

    Abstract The purpose of this study is to efficiently solve N by N linear systems Ax = b obtained by eXtended Element-free Galerkin method (X-EFG). X-EFG is one of the meshless methods for discretizing partial differential equations, and the linear systems have asymmetric saddle point structure. In this study, the block Krylov subspace methods have been applied for solving linear systems obtained by X-EFG. Note that the block Krylov subspace methods are usually employed for solving linear systems with multiple right hand sides, AX = B, where X = [x1, x2, …, xL], B = [b1, b2, …, bL], and L is… More >

Displaying 1-10 on page 1 of 14. Per Page