Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    CGAN Accelerated Subdivision Surface BEM for Acoustic Scattering

    Ziyu Cui, Zijun Wei, Xiaohui Yuan, Pei Li*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1045-1070, 2025, DOI:10.32604/cmes.2025.066659 - 31 July 2025

    Abstract At present, noise reduction has become an urgent challenge across various fields. Whether in the context of household appliances in daily life or in the enhancement of stealth performance in military equipment, noise control technologies play a critical role. This study introduces a computational framework for simulating Helmholtz equation-governed acoustic scattering using a boundary element method (BEM) integrated with Loop subdivision surfaces. By adopting the Loop subdivision scheme—a widely used computer-aided design (CAD) technique—the framework unifies geometric representation and physical field discretization, ensuring seamless compatibility with industrial CAD workflows. The core innovation lies in the More >

  • Open Access

    ARTICLE

    A Subdivision-Based Combined Shape and Topology Optimization in Acoustics

    Chuang Lu1, Leilei Chen2,3, Jinling Luo4, Haibo Chen1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 847-872, 2024, DOI:10.32604/cmes.2023.044446 - 30 December 2023

    Abstract We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces. The existing structural optimization methods mainly contain shape and topology schemes, with the former changing the surface geometric profile of the structure and the latter changing the material distribution topology or hole topology of the structure. In the present acoustic performance optimization, the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure, the artificial density of the sound… More >

  • Open Access

    ARTICLE

    Noise Pollution Reduction through a Novel Optimization Procedure in Passive Control Methods

    Haojie Lian1,2, Leilei Chen2,3, Xiao Lin4, Wenchang Zhao5,*, Stephane P. A. Bordas6,7, Mingdong Zhou8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 1-18, 2022, DOI:10.32604/cmes.2022.019705 - 24 January 2022

    Abstract This paper proposes a novel optimization framework in passive control techniques to reduce noise pollution. The geometries of the structures are represented by Catmull-Clark subdivision surfaces, which are able to build gap-free Computer-Aided Design models and meanwhile tackle the extraordinary points that are commonly encountered in geometric modelling. The acoustic fields are simulated using the isogeometric boundary element method, and a density-based topology optimization is conducted to optimize distribution of sound-absorbing materials adhered to structural surfaces. The approach enables one to perform acoustic optimization from Computer-Aided Design models directly without needing meshing and volume parameterization, More >

Displaying 1-10 on page 1 of 3. Per Page