Azhar Tursynova1, Batyrkhan Omarov1,2, Natalya Tukenova3,*, Indira Salgozha4, Onergul Khaaval3, Rinat Ramazanov5, Bagdat Ospanov5
CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1431-1446, 2023, DOI:10.32604/cmc.2023.034400
- 06 February 2023
Abstract In the field of stroke imaging, deep learning (DL) has enormous untapped potential. When clinically significant symptoms of a cerebral stroke are detected, it is crucial to make an urgent diagnosis using available imaging techniques such as computed tomography (CT) scans. The purpose of this work is to classify brain CT images as normal, surviving ischemia or cerebral hemorrhage based on the convolutional neural network (CNN) model. In this study, we propose a computer-aided diagnostic system (CAD) for categorizing cerebral strokes using computed tomography images. Horizontal flip data magnification techniques were used to obtain more… More >