Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Construction of microstructure and nutrient transport properties of tibial segmental implant prosthesis

    Xiangzhe Zhang1, Jizhe Hai1, Chunlong Shan2, Xuehai Ma3

    Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol.40, No.2, pp. 1-6, 2024, DOI:10.23967/j.rimni.2024.05.014 - 14 June 2024

    Abstract Segmental tibial bone defects caused by bone tumors, open fractures, and non-union of large bone segments are one of the challenges in orthopedic diseases. In existing research on load-bearing implants, it has been found that stress mismatch at the bone/implant interface leading to implant loosening and biological instability due to limited depth of bone ingrowth are key obstacles to the development of tibial implants. Therefore,In this study, the mechanical properties and internal fluid properties of three existing bone scaffold microstructures were investigated by finite element analysis.Based on the requirements of tibial segmental bone defect scaffolds, More >

  • Open Access

    ARTICLE

    Intracellular stress transmission through actin stress fiber network in adherent vascular cells

    S. Deguchi1,2, T. Ohashi2, M. Sato2

    Molecular & Cellular Biomechanics, Vol.2, No.4, pp. 205-216, 2005, DOI:10.3970/mcb.2005.002.205

    Abstract Intracellular stress transmission through subcellular structural components has been proposed to affect activation of localized mechano-sensing sites such as focal adhesions in adherent cells. Previous studies reported that physiological extracellular forces produced heterogeneous spatial distributions of cytoplasmic strain. However, mechanical signaling pathway involved in intracellular force transmission through basal actin stress fibers (SFs), a mechano-responsive cytoskeletal structure, remains elusive. In the present study, we investigated force balance within the basal SFs of cultured smooth muscle cells and endothelial cells by (i) removing the cell membrane and cytoplasmic constituents except for materials physically attaching to the… More >

Displaying 1-10 on page 1 of 2. Per Page