Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (28)
  • Open Access

    ARTICLE

    A Simplified Method for the Stress Analysis of Underground Transfer Structures Crossing Multiple Subway Tunnels

    Shen Yan1, Dajiang Geng2,*, Ning Dai3, Mingjian Long2, Zhicheng Bai2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2893-2915, 2024, DOI:10.32604/cmes.2024.046931 - 11 March 2024

    Abstract According to the design specifications, the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer. To address this challenge, a subterranean transfer structure spanning multiple subway tunnels was proposed. Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness, and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure, we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model. The resolved… More >

  • Open Access

    ARTICLE

    Contact stresses and bending stresses analysis of curvilinear cylindrical gears generated by a face-milling cutter with parabolic profile

    Zhang Xuegang1, Huang Xiaobin1, Gan Bin2

    Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol.39, No.3, pp. 1-22, 2023, DOI:10.23967/j.rimni.2023.09.001 - 18 September 2023

    Abstract Curvilinear cylindrical gear drives are a type of parallel-axis gear set, and the longitudinal geometrical shape of the gear teeth is a part of the circular arc. This study aims to develop a curvilinear cylindrical gear drive with superior transmission performance. This study proposes a curvilinear cylindrical gear drive with a parabolic profile. The gear tooth surfaces are generated by a face-milling cutter with a straight-line profile, and the matching gear tooth surfaces are generated by a face-milling cutter with the parabolic profile. Initially, mathematical models of the gear set are described based on the More >

  • Open Access

    ARTICLE

    A Novel Deep Learning Based Healthcare Model for COVID-19 Pandemic Stress Analysis

    Ankur Dumka1, Parag Verma2, Rajesh Singh3, Anil Kumar Bisht4, Divya Anand5,6,*, Hani Moaiteq Aljahdali7, Irene Delgado Noya6,8, Silvia Aparicio Obregon6,9

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 6029-6044, 2022, DOI:10.32604/cmc.2022.024698 - 21 April 2022

    Abstract Coronavirus (COVID-19) has impacted nearly every person across the globe either in terms of losses of life or as of lockdown. The current coronavirus (COVID-19) pandemic is a rare/special situation where people can express their feelings on Internet-based social networks. Social media is emerging as the biggest platform in recent years where people spend most of their time expressing themselves and their emotions. This research is based on gathering data from Twitter and analyzing the behavior of the people during the COVID-19 lockdown. The research is based on the logic expressed by people in this… More >

  • Open Access

    REVIEW

    Tensile and Stress Analysis of Hybrid Composite Prosthetic Socket Reinforced with Natural Fibers

    Noor K. Faheed*, Qahtan A. Hamad, Jawad K. Oleiwi

    Journal of Renewable Materials, Vol.10, No.7, pp. 1989-2013, 2022, DOI:10.32604/jrm.2022.017573 - 07 March 2022

    Abstract Natural fibers and their composites are the evolving movements in material science, and with that, the utmost use of plant-based fibers has become the focus of this research. Sisal and cotton natural fibers were used to construct a prosthetic socket as an attempt to substitute material currently available in the manufacturing of sockets. The vacuum bagging technique was adopted to produce a below-knee socket. The influence of different fiber layering sequences on the volumetric and mechanical characteristics was estimated experimentally and numerically. Mechanical tensile tests were used to assess laminated specimens, such as tensile strength,… More >

  • Open Access

    ARTICLE

    Stress Analysis of Printed Circuit Board with Different Thickness and Composite Materials Under Shock Loading

    Kuan-Ting Liu1, Chun-Lin Lu1, Nyan-Hwa Tai2, Meng-Kao Yeh1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.2, pp. 661-674, 2020, DOI:10.32604/cmes.2020.07792 - 01 February 2020

    Abstract In this study, the deformation and stress distribution of printed circuit board (PCB) with different thickness and composite materials under a shock loading were analyzed by the finite element analysis. The standard 8-layer PCB subjected to a shock loading 1500 g was evaluated first. Moreover, the finite element models of the PCB with different thickness by stacking various number of layers were discussed. In addition to changing thickness, the core material of PCB was replaced from woven E-glass/epoxy to woven carbon fiber/epoxy for structural enhancement. The non-linear material property of copper foil was considered in… More >

  • Open Access

    ARTICLE

    Multi-Scale Analysis of Fretting Fatigue in Heterogeneous Materials Using Computational Homogenization

    Dimitra Papagianni1, 2, Magd Abdel Wahab3, 4, *

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 79-97, 2020, DOI:10.32604/cmc.2020.07988

    Abstract This paper deals with modeling of the phenomenon of fretting fatigue in heterogeneous materials using the multi-scale computational homogenization technique and finite element analysis (FEA). The heterogeneous material for the specimens consists of a single hole model (25% void/cell, 16% void/cell and 10% void/cell) and a four-hole model (25% void/cell). Using a representative volume element (RVE), we try to produce the equivalent homogenized properties and work on a homogeneous specimen for the study of fretting fatigue. Next, the fretting fatigue contact problem is performed for 3 new cases of models that consist of a homogeneous More >

  • Open Access

    ABSTRACT

    Vascular Stress Analysis During in Vivo Intravascular Optical Coherence Tomography Imaging

    Junjie Jia1, Cuiru Sun1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 61-64, 2019, DOI:10.32604/mcb.2019.05736

    Abstract Intravascular optical coherence tomography (IVOCT) has been employed to clinical coronary imaging for several years. But the influence of flushing and OCT catheter to the blood vessel biomechanical properties have not been studied. In this paper, IVOCT imaging is integrated with the fluid-structure interaction (FSI) simulation to study the blood flow velocity and the stress distribution of a porcine carotid artery during IVOCT imaging. 3D geometric model is built based on the in vivo OCT images, and a hyperelastic model is employed for the material properties of the vascular wall. The blood flow profile and wall More >

  • Open Access

    ARTICLE

    Shape Optimization of Orthopedic Fixation Plate Based on Static Stress Analysis

    Xiaozhong Chen1,*, Zhijian Mao1

    Molecular & Cellular Biomechanics, Vol.15, No.4, pp. 229-241, 2018, DOI:10.32604/mcb.2018.03818

    Abstract Shape optimization of orthopedic fixation plate is of great importance in the treatment of complex fracture. Therefore, a method in this paper to automatically optimize the complex shape of anatomical plate according to static analysis. Based on the theory of finite element analysis (FEA), our approach is processed as follows. First, the three-dimensional finite element model of the fracture fixation is constructed. Next, according to the type and feature of fracture, the anatomical plate was parameterized in two levels (the bounding surface and plate model). Then, parameter constraints are set up to meet the needs More >

  • Open Access

    ARTICLE

    Elastodynamic Analysis of Thick Multilayer Composite Plates by The Boundary Element Method

    J. Useche1, H. Alvarez1

    CMES-Computer Modeling in Engineering & Sciences, Vol.107, No.4, pp. 277-296, 2015, DOI:10.3970/cmes.2015.107.277

    Abstract Dynamic stress analysis of laminated composites plates represents a relevant task in designing of aerospace, shipbuilding and automotive components where impulsive loads can lead to sudden structural failure. The mechanical complexity inherent to these kind of components makes the numerical modeling an essential engineering analysis tool. This work deals with dynamic analysis of stresses and deformations in laminated composites thick plates using a new Boundary Element Method formulation. Composite laminated plates were modeled using the Reissner’s plate theory. We propose a direct time-domain formulation based on elastostatic fundamental solution for symmetrical laminated thick plates. Formulation More >

  • Open Access

    ARTICLE

    Efficient BEM Stress Analysis of 3D Generally Anisotropic Elastic Solids With Stress Concentrations and Cracks

    Y.C. Shiah1, C.L. Tan2, Y.H. Chen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.4, pp. 243-257, 2013, DOI:10.3970/cmes.2013.096.243

    Abstract The present authors have recently proposed an efficient, alternative approach to numerically evaluate the fundamental solution and its derivatives for 3D general anisotropic elasticity. It is based on a double Fourier series representation of the exact, explicit form of the Green’s function derived by Ting and Lee (1997). This paper reports on the successful implementation of the fundamental solution and its derivatives based on this Fourier series scheme in the boundary element method (BEM) for 3D general anisotropic elastostatics. Some numerical examples of stress concentration problems and a crack problem are presented to demonstrate the More >

Displaying 1-10 on page 1 of 28. Per Page