Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A New Criterion for Defining Inhomogeneous Slope Failure Using the Strength Reduction Method

    Chengya Hua1, Leihua Yao1,*, Chenguang Song1, Qihang Ni1, Dongfang Chen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.2, pp. 413-434, 2022, DOI:10.32604/cmes.2022.020260 - 15 June 2022

    Abstract A new variational method treating the system as a whole with rigorous mathematical and physical derivation was presented in this paper. Combined with classical and engineering examples, variational energy expressions of slopes were derived. In addition, the calculation programs were written in the FISH language set in FLAC3D (fast Lagrangian analysis of continua in three dimensions) software. Factors of safety (FOSs) of the models were determined by the variational method based on the strength reduction method (SRM) and then compared with other criteria or methods. The result showed that the variational method reflected the process… More >

  • Open Access

    ARTICLE

    Safety Evaluation of Concrete Structures Based on a Novel Energy Criterion

    Qiang Tong1, Qingwen Ren1, *, Lei Shen 2, Linfei Zhang 2, Yin Yang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.114, No.1, pp. 33-58, 2018, DOI:10.3970/cmes.2018.114.033

    Abstract In this article, the post-peak softening stage of the constitutive relation and the elastic stiffness degradation of concrete are investigated, and a highly reasonable constitutive relation curve is proposed. At the material level, the energy change in the concrete failure process is studied based on the different stress-strain curves of concrete under uniaxial tension and compression. The concrete failure criterion based on elastic strain energy density is deemed suitable and consistent with the experimental phenomena. The hysteresis phenomenon (lags behind the peak strength) is also discussed. At the structure level, the strength reduction method is More >

Displaying 1-10 on page 1 of 2. Per Page