Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Identification of Damage in Steel‒Concrete Composite Beams Based on Wavelet Analysis and Deep Learning

    Chengpeng Zhang, Junfeng Shi*, Caiping Huang

    Structural Durability & Health Monitoring, Vol.18, No.4, pp. 465-483, 2024, DOI:10.32604/sdhm.2024.048705 - 05 June 2024

    Abstract In this paper, an intelligent damage detection approach is proposed for steel-concrete composite beams based on deep learning and wavelet analysis. To demonstrate the feasibility of this approach, first, following the guidelines provided by relevant standards, steel-concrete composite beams are designed, and six different damage incidents are established. Second, a steel ball is used for free-fall excitation on the surface of the steel-concrete composite beams and a low-temperature-sensitive quasi-distributed long-gauge fiber Bragg grating (FBG) strain sensor is used to obtain the strain signals of the steel-concrete composite beams with different damage types. To reduce the… More >

  • Open Access

    ABSTRACT

    Three Dimensional Simulation of the Shear Property of Steel-concrete Composite Beams with an Interface-slip Model

    Shiqin He, Pengfei Li, Feng Shang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.2, pp. 57-58, 2011, DOI:10.3970/icces.2011.018.057

    Abstract A three-dimensional finite-element (FE) analytical approach for the simulation of Shear property of steel-concrete composite beam is presents in this paper. To simulate the interfacial behavior between the steel girders and concrete slabs, an interface-slip model which has been better used in analyzing the flexural property of composite beams is applied in the simulation. Both simple-supported beam experiment at positive bending zone and negative bending moment zone in literatures are simulated respectively. The load-deflection and the slip rule between the steel girders and concrete slabs as well as the crack pattern and the contour at More >

  • Open Access

    ARTICLE

    Three-Dimensional Simulation of the Shear Properties of Steel-Concrete Composite Beams using an Interface Slip Model

    Shiqin He1, Pengfei Li1, Feng Shang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.73, No.4, pp. 387-394, 2011, DOI:10.3970/cmes.2011.073.387

    Abstract A three-dimensional finite element (FE) and analytical approach for the simulation of the shear properties of steel-concrete composite beams are presented in this paper. To simulate the interfacial behavior between steel girders and concrete slabs, we apply an interface slip model in the simulation. This model has been used in analyzing the flexural properties of composite beams. Both simply supported beam and continuous composite beam experiments reported in literature are simulated. The load deflection and slip rule between steel girders and concrete slabs, as well as the crack pattern and contour at the ultimate load, More >

Displaying 1-10 on page 1 of 3. Per Page