Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Bi-LSTM-Based Deep Stacked Sequence-to-Sequence Autoencoder for Forecasting Solar Irradiation and Wind Speed

    Neelam Mughees1,2, Mujtaba Hussain Jaffery1, Abdullah Mughees3, Anam Mughees4, Krzysztof Ejsmont5,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6375-6393, 2023, DOI:10.32604/cmc.2023.038564 - 29 April 2023

    Abstract Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050. However, they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions. In microgrids, smart energy management systems, such as integrated demand response programs, are permanently established on a step-ahead basis, which means that accurate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids. With this in mind, a novel “bidirectional long short-term memory network” (Bi-LSTM)-based, deep stacked,… More >

  • Open Access

    ARTICLE

    Feature Selection with Stacked Autoencoder Based Intrusion Detection in Drones Environment

    Heba G. Mohamed1, Saud S. Alotaibi2, Majdy M. Eltahir3, Heba Mohsen4, Manar Ahmed Hamza5,*, Abu Sarwar Zamani5, Ishfaq Yaseen5, Abdelwahed Motwakel5

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5441-5458, 2022, DOI:10.32604/cmc.2022.031887 - 28 July 2022

    Abstract The Internet of Drones (IoD) offers synchronized access to organized airspace for Unmanned Aerial Vehicles (known as drones). The availability of inexpensive sensors, processors, and wireless communication makes it possible in real time applications. As several applications comprise IoD in real time environment, significant interest has been received by research communications. Since IoD operates in wireless environment, it is needed to design effective intrusion detection system (IDS) to resolve security issues in the IoD environment. This article introduces a metaheuristics feature selection with optimal stacked autoencoder based intrusion detection (MFSOSAE-ID) in the IoD environment. The… More >

  • Open Access

    ARTICLE

    Energy Aware Secure Cyber-Physical Systems with Clustered Wireless Sensor Networks

    Masoud Alajmi1, Mohamed K. Nour2, Siwar Ben Haj Hassine3, Mimouna Abdullah Alkhonaini4, Manar Ahmed Hamza5,*, Ishfaq Yaseen5, Abu Sarwar Zamani5, Mohammed Rizwanullah5

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5499-5513, 2022, DOI:10.32604/cmc.2022.026187 - 21 April 2022

    Abstract Recently, cyber physical system (CPS) has gained significant attention which mainly depends upon an effective collaboration with computation and physical components. The greatly interrelated and united characteristics of CPS resulting in the development of cyber physical energy systems (CPES). At the same time, the rising ubiquity of wireless sensor networks (WSN) in several application areas makes it a vital part of the design of CPES. Since security and energy efficiency are the major challenging issues in CPES, this study offers an energy aware secure cyber physical systems with clustered wireless sensor networks using metaheuristic algorithms… More >

  • Open Access

    ARTICLE

    Wireless Intrusion Detection Based on Optimized LSTM with Stacked Auto Encoder Network

    S. Karthic1,*, S. Manoj Kumar2

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 439-453, 2022, DOI:10.32604/iasc.2022.025153 - 15 April 2022

    Abstract In recent years, due to the rapid progress of various technologies, wireless computer networks have developed. However, the activities of the security threats and attackers affect the data communication of these technologies. So, to protect the network against these security threats, an efficient IDS (Intrusion Detection System) is presented in this paper. Namely, optimized long short-term memory (OLSTM) network with a stacked auto-encoder (SAE) network is proposed as an IDS system. Using SAE, significant features are extracted from the databases such as input NSL-KDD database and the UNSW-NB15 database. Then extracted features are given as More >

  • Open Access

    ARTICLE

    Intelligent Forensic Investigation Using Optimal Stacked Autoencoder for Critical Industrial Infrastructures

    Abdullah S. AL-Malaise AL-Ghamdi1, Mahmoud Ragab2,3,4,*, F. J. Alsolami5, Hani Choudhry3,6, Ibrahim Rizqallah Alzahrani7

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2275-2289, 2022, DOI:10.32604/cmc.2022.026226 - 29 March 2022

    Abstract Industrial Control Systems (ICS) can be employed on the industrial processes in order to reduce the manual labor and handle the complicated industrial system processes as well as communicate effectively. Internet of Things (IoT) integrates numerous sets of sensors and devices via a data network enabling independent processes. The incorporation of the IoT in the industrial sector leads to the design of Industrial Internet of Things (IIoT), which find use in water distribution system, power plants, etc. Since the IIoT is susceptible to different kinds of attacks due to the utilization of Internet connection, an… More >

  • Open Access

    ARTICLE

    Denoising Letter Images from Scanned Invoices Using Stacked Autoencoders

    Samah Ibrahim Alshathri1,*, Desiree Juby Vincent2, V. S. Hari2

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1371-1386, 2022, DOI:10.32604/cmc.2022.022458 - 03 November 2021

    Abstract Invoice document digitization is crucial for efficient management in industries. The scanned invoice image is often noisy due to various reasons. This affects the OCR (optical character recognition) detection accuracy. In this paper, letter data obtained from images of invoices are denoised using a modified autoencoder based deep learning method. A stacked denoising autoencoder (SDAE) is implemented with two hidden layers each in encoder network and decoder network. In order to capture the most salient features of training samples, a undercomplete autoencoder is designed with non-linear encoder and decoder function. This autoencoder is regularized for… More >

  • Open Access

    ARTICLE

    Optimized Stacked Autoencoder for IoT Enabled Financial Crisis Prediction Model

    Mesfer Al Duhayyim1, Hadeel Alsolai2, Fahd N. Al-Wesabi3,4, Nadhem Nemri3, Hany Mahgoub3, Anwer Mustafa Hilal5, Manar Ahmed Hamza5,*, Mohammed Rizwanullah5

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1079-1094, 2022, DOI:10.32604/cmc.2022.021199 - 03 November 2021

    Abstract Recently, Financial Technology (FinTech) has received more attention among financial sectors and researchers to derive effective solutions for any financial institution or firm. Financial crisis prediction (FCP) is an essential topic in business sector that finds it useful to identify the financial condition of a financial institution. At the same time, the development of the internet of things (IoT) has altered the mode of human interaction with the physical world. The IoT can be combined with the FCP model to examine the financial data from the users and perform decision making process. This paper presents… More >

  • Open Access

    ARTICLE

    Automatic Detection of COVID-19 Using a Stacked Denoising Convolutional Autoencoder

    Habib Dhahri1,2,*, Besma Rabhi3, Slaheddine Chelbi4, Omar Almutiry1, Awais Mahmood1, Adel M. Alimi3

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3259-3274, 2021, DOI:10.32604/cmc.2021.018449 - 24 August 2021

    Abstract The exponential increase in new coronavirus disease 2019 ({COVID-19}) cases and deaths has made COVID-19 the leading cause of death in many countries. Thus, in this study, we propose an efficient technique for the automatic detection of COVID-19 and pneumonia based on X-ray images. A stacked denoising convolutional autoencoder (SDCA) model was proposed to classify X-ray images into three classes: normal, pneumonia, and {COVID-19}. The SDCA model was used to obtain a good representation of the input data and extract the relevant features from noisy images. The proposed model’s architecture mainly composed of eight autoencoders, More >

  • Open Access

    ARTICLE

    An Intelligent Gestational Diabetes Diagnosis Model Using Deep Stacked Autoencoder

    A. Sumathi1,*, S. Meganathan1, B. Vijila Ravisankar2

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3109-3126, 2021, DOI:10.32604/cmc.2021.017612 - 24 August 2021

    Abstract Gestational Diabetes Mellitus (GDM) is one of the commonly occurring diseases among women during pregnancy. Oral Glucose Tolerance Test (OGTT) is followed universally in the diagnosis of GDM diagnosis at early pregnancy which is costly and ineffective. So, there is a need to design an effective and automated GDM diagnosis and classification model. The recent developments in the field of Deep Learning (DL) are useful in diagnosing different diseases. In this view, the current research article presents a new outlier detection with deep-stacked Autoencoder (OD-DSAE) model for GDM diagnosis and classification. The goal of the… More >

  • Open Access

    ARTICLE

    A Secure Intrusion Detection System in Cyberphysical Systems Using a Parameter-Tuned Deep-Stacked Autoencoder

    Nojood O. Aljehane*

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3915-3929, 2021, DOI:10.32604/cmc.2021.017905 - 06 May 2021

    Abstract Cyber physical systems (CPSs) are a networked system of cyber (computation, communication) and physical (sensors, actuators) elements that interact in a feedback loop with the assistance of human interference. Generally, CPSs authorize critical infrastructures and are considered to be important in the daily lives of humans because they form the basis of future smart devices. Increased utilization of CPSs, however, poses many threats, which may be of major significance for users. Such security issues in CPSs represent a global issue; therefore, developing a robust, secure, and effective CPS is currently a hot research topic. To… More >

Displaying 1-10 on page 1 of 12. Per Page