Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Lightweight Malicious Code Classification Method Based on Improved SqueezeNet

    Li Li*, Youran Kong, Qing Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 551-567, 2024, DOI:10.32604/cmc.2023.045512 - 30 January 2024

    Abstract With the growth of the Internet, more and more business is being done online, for example, online offices, online education and so on. While this makes people’s lives more convenient, it also increases the risk of the network being attacked by malicious code. Therefore, it is important to identify malicious codes on computer systems efficiently. However, most of the existing malicious code detection methods have two problems: (1) The ability of the model to extract features is weak, resulting in poor model performance. (2) The large scale of model data leads to difficulties deploying on… More >

  • Open Access

    ARTICLE

    SNSVM: SqueezeNet-Guided SVM for Breast Cancer Diagnosis

    Jiaji Wang1, Muhammad Attique Khan2, Shuihua Wang1,3, Yudong Zhang1,3,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2201-2216, 2023, DOI:10.32604/cmc.2023.041191 - 30 August 2023

    Abstract Breast cancer is a major public health concern that affects women worldwide. It is a leading cause of cancer-related deaths among women, and early detection is crucial for successful treatment. Unfortunately, breast cancer can often go undetected until it has reached advanced stages, making it more difficult to treat. Therefore, there is a pressing need for accurate and efficient diagnostic tools to detect breast cancer at an early stage. The proposed approach utilizes SqueezeNet with fire modules and complex bypass to extract informative features from mammography images. The extracted features are then utilized to train… More >

  • Open Access

    ARTICLE

    Earthworm Optimization with Improved SqueezeNet Enabled Facial Expression Recognition Model

    N. Sharmili1, Saud Yonbawi2, Sultan Alahmari3, E. Laxmi Lydia4, Mohamad Khairi Ishak5, Hend Khalid Alkahtani6,*, Ayman Aljarbouh7, Samih M. Mostafa8

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2247-2262, 2023, DOI:10.32604/csse.2023.036377 - 09 February 2023

    Abstract Facial expression recognition (FER) remains a hot research area among computer vision researchers and still becomes a challenge because of high intra-class variations. Conventional techniques for this problem depend on hand-crafted features, namely, LBP, SIFT, and HOG, along with that a classifier trained on a database of videos or images. Many execute perform well on image datasets captured in a controlled condition; however not perform well in the more challenging dataset, which has partial faces and image variation. Recently, many studies presented an endwise structure for facial expression recognition by utilizing DL methods. Therefore, this… More >

  • Open Access

    ARTICLE

    SNELM: SqueezeNet-Guided ELM for COVID-19 Recognition

    Yudong Zhang1, Muhammad Attique Khan2, Ziquan Zhu1, Shuihua Wang1,*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 13-26, 2023, DOI:10.32604/csse.2023.034172 - 20 January 2023

    Abstract (Aim) The COVID-19 has caused 6.26 million deaths and 522.06 million confirmed cases till 17/May/2022. Chest computed tomography is a precise way to help clinicians diagnose COVID-19 patients. (Method) Two datasets are chosen for this study. The multiple-way data augmentation, including speckle noise, random translation, scaling, salt-and-pepper noise, vertical shear, Gamma correction, rotation, Gaussian noise, and horizontal shear, is harnessed to increase the size of the training set. Then, the SqueezeNet (SN) with complex bypass is used to generate SN features. Finally, the extreme learning machine (ELM) is used to serve as the classifier due… More >

  • Open Access

    ARTICLE

    Intelligent Deep Learning Based Disease Diagnosis Using Biomedical Tongue Images

    V. Thanikachalam1,*, S. Shanthi2, K. Kalirajan3, Sayed Abdel-Khalek4,5, Mohamed Omri6, Lotfi M. Ladhar7

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5667-5681, 2022, DOI:10.32604/cmc.2022.020965 - 11 October 2021

    Abstract The rapid development of biomedical imaging modalities led to its wide application in disease diagnosis. Tongue-based diagnostic procedures are proficient and non-invasive in nature to carry out secondary diagnostic processes ubiquitously. Traditionally, physicians examine the characteristics of tongue prior to decision-making. In this scenario, to get rid of qualitative aspects, tongue images can be quantitatively inspected for which a new disease diagnosis model is proposed. This model can reduce the physical harm made to the patients. Several tongue image analytical methodologies have been proposed earlier. However, there is a need exists to design an intelligent… More >

  • Open Access

    ARTICLE

    Leaf Blights Detection and Classification in Large Scale Applications

    Abdul Muiz Fayyaz1, Kawther A. Al-Dhlan2, Saeed Ur Rehman1, Mudassar Raza1, Waqar Mehmood3, Muhammad Shafiq4, Jin-Ghoo Choi4,*

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 507-522, 2022, DOI:10.32604/iasc.2022.016392 - 03 September 2021

    Abstract Crops are very important to the financial needs of a country. Due to various diseases caused by different pathogens, a large number of crops have been destroyed. As humanoids, our basic need is food for survival, and the most basic foundation of our food is agriculture. For many developing countries, it is mainly an important source of income. Bacterial diseases are one of the main diseases that cause improper production and a major economic crisis for the country. Therefore, it is necessary to detect the disease early. However, it is not easy for humans to… More >

  • Open Access

    ARTICLE

    Convolutional Bi-LSTM Based Human Gait Recognition Using Video Sequences

    Javaria Amin1, Muhammad Almas Anjum2, Muhammad Sharif3, Seifedine Kadry4, Yunyoung Nam5,*, ShuiHua Wang6

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2693-2709, 2021, DOI:10.32604/cmc.2021.016871 - 13 April 2021

    Abstract Recognition of human gait is a difficult assignment, particularly for unobtrusive surveillance in a video and human identification from a large distance. Therefore, a method is proposed for the classification and recognition of different types of human gait. The proposed approach is consisting of two phases. In phase I, the new model is proposed named convolutional bidirectional long short-term memory (Conv-BiLSTM) to classify the video frames of human gait. In this model, features are derived through convolutional neural network (CNN) named ResNet-18 and supplied as an input to the LSTM model that provided more distinguishable More >

Displaying 1-10 on page 1 of 7. Per Page