Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Classification and clustering of buildings for understanding urban dynamics

    A framework for processing spatiotemporal data

    Perez Joan1, Fusco Giovanni1, Sadahiro Yukio2

    Revue Internationale de Géomatique, Vol.31, No.2, pp. 303-328, 2022, DOI:10.3166/rig31.303-328

    Abstract This paper presents different methods implemented with the aim of studying urban dynamics at the building level. Building types are identified within a comprehensive vector-based building inventory, spanning over at least two time points. First, basic morphometric indicators are computed for each building: area, floor-area, number of neighbors, elongation, and convexity. Based on the availability of expert knowledge, different types of classification and clustering are performed: supervised tree-like classificatory model, expert-constrained k-means and combined SOM-HCA. A grid is superimposed on the test region of Osaka (Japan) and the number of building types per cell and More >

Displaying 1-10 on page 1 of 1. Per Page