Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Prediction of the Pore-Pressure Built-Up and Temperature of Fire-Loaded Concrete with Pix2Pix

    Xueya Wang1, Yiming Zhang2,3,*, Qi Liu4, Huanran Wang1

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2907-2922, 2024, DOI:10.32604/cmc.2024.050736

    Abstract Concrete subjected to fire loads is susceptible to explosive spalling, which can lead to the exposure of reinforcing steel bars to the fire, substantially jeopardizing the structural safety and stability. The spalling of fire-loaded concrete is closely related to the evolution of pore pressure and temperature. Conventional analytical methods involve the resolution of complex, strongly coupled multifield equations, necessitating significant computational efforts. To rapidly and accurately obtain the distributions of pore-pressure and temperature, the Pix2Pix model is adopted in this work, which is celebrated for its capabilities in image generation. The open-source dataset used herein… More >

  • Open Access

    PROCEEDINGS

    Investigation on Spall Fracture in Metallic Material Generated in Laser Shock Peening via Fracture Phase Field Method

    Shuaipeng Qi1, Yongxing Shen1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09131

    Abstract The local surface crack has already been the main reason that has great negative influence on the fatigue life and the resistance of foreign object damage of important equipment, such as the blades of aviation engine. Laser shock peening (LSP) is a very effective technology for metallic surface treatment, which has been widely used to overcome the negative influence of local surface crack. However, when LSP is applied to a thin specimen, an undesirable result spall fracture, which is close to the free surface inside the specimen, may occur.
    The spall fracture phenomenon generated in LSP… More >

  • Open Access

    PROCEEDINGS

    Multi-phase Modeling on Spall and Recompression Process of Tin Under Double Shockwaves

    Fengchao Wu1,*, Xuhai Li1, Yi Sun1, Yuanchao Gan1, Huayun Geng1, Yuying Yu1, Jianbo Hu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09320

    Abstract The dynamical response of materials to multiple shock waves is a critical issue in shock physics and engineering applications. In this work, hydrodynamic simulations are used to investigate the shock-induced spall failure and subsequent recompression characteristics of tin, under the implementation of a multiphase equation of state, multi-phase constitutive relations, and a damage model. As within experiments, double shock loadings in simulations are driven by layered impactors with different shock impedances. In general, our numerical calculations agree well with recent tin spall experiments and reproduce the free surface velocity characteristics. Interesting dynamic behaviors such as… More >

  • Open Access

    ARTICLE

    Atomistic Modeling of Spall Response in a Single Crystal Aluminum

    R. R. Valisetty1, A. M. Dongare2, A. M. Rajendran3, R. R. Namburu1

    CMC-Computers, Materials & Continua, Vol.44, No.1, pp. 23-57, 2014, DOI:10.3970/cmc.2014.044.023

    Abstract Materials used in soldier protective structures, such as armor, vehicles and civil infrastructures, are being improved for performance in extreme dynamic environments. Accordingly, atomistic molecular dynamics simulations were performed to study the spall response in a single crystal aluminum atom system. A planar 9.6 picoseconds (ps) shock pulse was generated through impacts with a shock piston at velocities ranging from 0.6 km/s to 1.5 km/s in three <1,0,0>, <1,1,0>, and <1,1,1> crystal orientations. In addition to characterizing the transient spall region width and duration, the spall response was characterized interms of the traditional axial stress vs. axial… More >

  • Open Access

    ARTICLE

    Recent Developments on Thermo-Mechanical Simulations of Ductile Failure by Meshfree Method

    B. Ren1,2, J. Qian1, X. Zeng1, A. K. Jha3, S. Xiao4, S. Li1,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.71, No.3, pp. 253-278, 2011, DOI:10.3970/cmes.2011.071.253

    Abstract Ductile failure is a complex multi-scale phenomenon evolved from the micro-voids to macro-crack. There are three main failure mechanisms behinds a ductile failure: adiabatic shear band (ASB), spall fracture, and crack. Since this type of thermo-mechanical phenomena involves large deformation and large scale plastic yielding, a meshfree method has intrinsic advantages in solving this kind of problems over the conventional finite element method. In this paper, the numerical methodologies including multi-physics approach for ASB, parametric visibility condition for crack propagation, and multi-scale approach to determine spall strength in simulating ductile failure have been reviewed. A More >

  • Open Access

    ARTICLE

    Dynamic Failure Behavior of Nanocrystalline Cu at Atomic Scales

    A. M. Dongare1,2, A. M. Rajendran3, B. LaMattina4, M. A. Zikry1, D. W. Brenner1

    CMC-Computers, Materials & Continua, Vol.24, No.1, pp. 43-60, 2011, DOI:10.3970/cmc.2011.024.043

    Abstract Large-scale molecular dynamics (MD) simulations are used to investigate the effects of microstructure and loading conditions on the dynamic failure behavior of nanocrystalline Cu. The nucleation, growth, and coalescence of voids is investigated for the nanocrystalline metal with average grain sizes ranging from 6 nm to 12 nm (inverse Hall-Petch regime) for conditions of uniaxial expansion at constant strain rates ranging from 4x107 s - 1 to 1010 s - 1. MD simulations suggest that the evolution of voids can be described in two stages: The first stage corresponds to the nucleation of voids and… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Study of Dynamic Fragmentation in Laser Shock-Loaded Gold and Aluminium Targets

    E. Lescoute1, T. De Rességuier1, J.-M. Chevalier2, J. Breil3, P.-H. Maire2, G. Schurtz3

    CMC-Computers, Materials & Continua, Vol.22, No.3, pp. 219-238, 2011, DOI:10.3970/cmc.2011.022.219

    Abstract With the ongoing development of high energy laser facilities designed to achieve inertial confinement fusion, the ability to simulate debris ejection from metallic shells subjected to intense laser irradiation has become a key issue. We present an experimental and numerical study of fragmentation processes generating high velocity ejecta from laser shock-loaded metallic targets (aluminium and gold). Optical transverse shadowgraphy is used to observe and analyze dynamic fragmentation and debris ejection. Experimental results are compared to computations involving a fragmentation model based on a probabilistic description of material tensile strength. A correct overall consistency is obtained. More >

Displaying 1-10 on page 1 of 7. Per Page