Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Experimental Investigation of Particles Dynamics and Solid-Liquid Mixing Uniformity in a Stirred Tank

    Kai Yang1,2, Qinwen Yao1,2, Yingshan Li1,2, Wanchang Chen1,2, Saleh Khorasani3, Hua Wang1,2, Qingtai Xiao1,2,4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2585-2602, 2024, DOI:10.32604/fdmp.2024.050704 - 28 October 2024

    Abstract Particle suspension and deposition dynamics are significant factors affecting the level of mixing quality in solid-liquid two-phase stirring processes. In general, the ability to increase the suspension rate and minimize deposition effects is instrumental in improving the uniformity of particle mixing, accelerating the reaction of involved solid-liquid two-phase, and improving the efficiency of production operations. In this work, suspension and deposition indicator based on the Betti number and a uniformity indicator are introduced and obtained by means of image analysis. The influence of the blade type, rotation speed, blade diameter and blade bottom height on… More > Graphic Abstract

    Experimental Investigation of Particles Dynamics and Solid-Liquid Mixing Uniformity in a Stirred Tank

  • Open Access

    ARTICLE

    Numerical Simulation of Proppant Dynamics in a Rough Inclined Fracture

    Tiankui Guo1,*, Zhilin Luo1, Shanbo Mou2, Ming Chen1, Yuanzhi Gong3, Jianhua Qin4

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 431-447, 2022, DOI:10.32604/fdmp.2022.017861 - 16 December 2021

    Abstract Although the dynamics of proppant (small ceramic balls used to prevent opened fractures from closing on the release of pressure) have been the subject of several numerical studies over recent years, large-scale inclined fractures exist in unconventional reservoirs for which relevant information is still missing. In the present study, this problem is investigated numerically considering the influence of several relevant factors such as the fracture roughness, inclination, the proppant particle size, the injection rate and the fluid viscosity. The results show that a rough wall enables the proppant to travel farther and cover larger areas. More >

  • Open Access

    ARTICLE

    Effects of Particle Concentration on the Dynamics of a Single-Channel Sewage Pump under Low-Flow-Rate Conditions

    Peijian Zhou1,2, Chaoshou Yan3, Lingfeng Shu4, Hao Wang2, Jiegang Mou2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.5, pp. 871-886, 2021, DOI:10.32604/fdmp.2021.012250 - 05 July 2021

    Abstract Single-channel sewage pumps are generally used to transport solid-liquid two-phase media consisting of a fluid and solid particles due to the good non-clogging property of such devices. However, the non-axisymmetric structure of the impeller of this type of pumps generally induces flow asymmetry, oscillatory outflow during operations, and hydraulic imbalance. In severe cases, these effects can jeopardize the safety and stability of the overall pump. In the present study, such a problem is investigated in the framework of a Mixture multiphase flow method coupled with a RNG turbulence model used to determine the structure of… More >

  • Open Access

    ARTICLE

    AN AXISYMMETRIC MODEL FOR SOLID-LIQUID-VAPOR PHASE CHANGE IN THIN METAL FILMS INDUCED BY AN ULTRASHORT LASER PULSE

    Jing Huang, Kapil Baheti, J. K. Chen*, Yuwen Zhang

    Frontiers in Heat and Mass Transfer, Vol.2, No.1, pp. 1-10, 2011, DOI:10.5098/hmt.v2.1.3005

    Abstract An axisymmetric model for thermal transport in thin metal films irradiated by an ultrashort laser pulse was developed. The superheating phenomena including preheating, melting, vaporization and re-solidification were modeled and analyzed. Together with the energy balance, nucleation dynamics was employed iteratively to track the solid-liquid interface and the gas kinetics law was used iteratively to track the liquid-vapor interface. The numerical results showed that higher laser fluence and shorter pulse width lead to higher interfacial temperature, larger melting and ablation depths. A simplified 1-D model could overestimate temperature response and ablation depth due to the More >

  • Open Access

    ARTICLE

    Numerical Solution of 2D Natural Convection in a Concentric Annulus with Solid-Liquid Phase Change

    R. Avila1, F.J. Solorio1

    CMES-Computer Modeling in Engineering & Sciences, Vol.44, No.2, pp. 177-202, 2009, DOI:10.3970/cmes.2009.044.177

    Abstract Heat transfer processes involving phase change either, solidification or melting, appear frequently in nature and in industrial applications. In this paper the convective patterns that arise from a 2D shear driven annular flow (without and with melting), are presented. The convective annular flow with radial gravity can be considered as a simplified model of the atmospheric flow in the terrestrial equatorial plane (bounded by the warm surface of the Earth and the cold tropopause). The governing equations have been numerically solved by the Spectral Element Method. The numerical results reported in this paper, for the… More >

  • Open Access

    ARTICLE

    Influence of Thermocapillary Convection on Solid-liquid Interface

    K. Matsunaga1, H. Kawamura1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.1, pp. 59-64, 2006, DOI:10.3970/fdmp.2006.002.059

    Abstract Existing studies on solidification phenomena mainly focused on the solidification processes per se. In real systems, however, one cannot neglect the effects of molten material convective flow, such as natural and thermocapillary convection (they strongly affect the resulting quality of the solidified materials). The present study aims to experimentally investigate on the effect of the thermocapillary flow upon the directional solidification in a liquid layer with a free upper surface. If no free surface exists, the solid--liquid interface (SLI) is vertical and straight, while, with the free surface, the SLI is inclined against the wall-normal More >

Displaying 1-10 on page 1 of 6. Per Page