Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Spatio-Temporal Graph Neural Networks with Elastic-Band Transform for Solar Radiation Prediction

    Guebin Choi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.073985 - 29 January 2026

    Abstract This study proposes a novel forecasting framework that simultaneously captures the strong periodicity and irregular meteorological fluctuations inherent in solar radiation time series. Existing approaches typically define inter-regional correlations using either simple correlation coefficients or distance-based measures when applying spatio-temporal graph neural networks (STGNNs). However, such definitions are prone to generating spurious correlations due to the dominance of periodic structures. To address this limitation, we adopt the Elastic-Band Transform (EBT) to decompose solar radiation into periodic and amplitude-modulated components, which are then modeled independently with separate graph neural networks. The periodic component, characterized by strong More >

  • Open Access

    ARTICLE

    Solar Radiation Prediction Using Boosted Coyote Optimization Algorithm with Deep Learning for Energy Management

    Shekaina Justin1,*, Wafaa Saleh2, Hind Mohammed Albalawi3, J. Shermina4

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5469-5487, 2025, DOI:10.32604/cmc.2025.066888 - 23 October 2025

    Abstract Solar radiation is the main source of energy on Earth and plays a major role in the hydrological cycles, surface radiation balance, weather and climate changes, and vegetation photosynthesis. Accurate solar radiation prediction is of paramount importance for both climate research and the solar industry. This prediction includes forecasting techniques and advanced modeling to evaluate the amount of solar energy available at a specific location during a given period. Solar energy is the cheapest form of clean energy, and due to the intermittent nature of the energy, accurate forecasting across multiple timeframes is necessary for… More >

  • Open Access

    ARTICLE

    Solar Radiation Prediction Using Satin Bowerbird Optimization with Modified Deep Learning

    Sheren Sadiq Hasan1, Zainab Salih Agee2, Bareen Shamsaldeen Tahir3, Subhi R. M. Zeebaree4,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3225-3238, 2023, DOI:10.32604/csse.2023.037434 - 03 April 2023

    Abstract Solar energy will be a great alternative to fossil fuels since it is clean and renewable. The photovoltaic (PV) mechanism produces sunbeams’ green energy without noise or pollution. The PV mechanism seems simple, seldom malfunctioning, and easy to install. PV energy productivity significantly contributes to smart grids through many small PV mechanisms. Precise solar radiation (SR) prediction could substantially reduce the impact and cost relating to the advancement of solar energy. In recent times, several SR predictive mechanism was formulated, namely artificial neural network (ANN), autoregressive moving average, and support vector machine (SVM). Therefore, this… More >

  • Open Access

    ARTICLE

    Data-Driven Models for Predicting Solar Radiation in Semi-Arid Regions

    Mehdi Jamei1, Nadjem Bailek2,*, Kada Bouchouicha3, Muhammed A. Hassan4, Ahmed Elbeltagi5, Alban Kuriqi6, Nadhir Al-Ansar7, Javier Almorox8, El-Sayed M. El-kenawy9,10

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1625-1640, 2023, DOI:10.32604/cmc.2023.031406 - 22 September 2022

    Abstract Solar energy represents one of the most important renewable energy sources contributing to the energy transition process. Considering that the observation of daily global solar radiation (GSR) is not affordable in some parts of the globe, there is an imperative need to develop alternative ways to predict it. Therefore, the main objective of this study is to evaluate the performance of different hybrid data-driven techniques in predicting daily GSR in semi-arid regions, such as the majority of Spanish territory. Here, four ensemble-based hybrid models were developed by hybridizing Additive Regression (AR) with Random Forest (RF),… More >

Displaying 1-10 on page 1 of 4. Per Page