Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Two-Phase Software Fault Localization Based on Relational Graph Convolutional Neural Networks

    Xin Fan1,2, Zhenlei Fu1,2,*, Jian Shu1,2, Zuxiong Shen1,2, Yun Ge1,2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2583-2607, 2025, DOI:10.32604/cmc.2024.057695 - 17 February 2025

    Abstract Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of… More >

  • Open Access

    ARTICLE

    Explainable Software Fault Localization Model: From Blackbox to Whitebox

    Abdulaziz Alhumam*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1463-1482, 2022, DOI:10.32604/cmc.2022.029473 - 18 May 2022

    Abstract The most resource-intensive and laborious part of debugging is finding the exact location of the fault from the more significant number of code snippets. Plenty of machine intelligence models has offered the effective localization of defects. Some models can precisely locate the faulty with more than 95% accuracy, resulting in demand for trustworthy models in fault localization. Confidence and trustworthiness within machine intelligence-based software models can only be achieved via explainable artificial intelligence in Fault Localization (XFL). The current study presents a model for generating counterfactual interpretations for the fault localization model's decisions. Neural system More >

Displaying 1-10 on page 1 of 2. Per Page