Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (291)
  • Open Access

    ARTICLE

    A Novel Unified Framework for Automated Generation and Multimodal Validation of UML Diagrams

    Van-Viet Nguyen1, Huu-Khanh Nguyen2, Kim-Son Nguyen1, Thi Minh-Hue Luong1, Duc-Quang Vu1, Trung-Nghia Phung3, The-Vinh Nguyen1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075442 - 29 January 2026

    Abstract It remains difficult to automate the creation and validation of Unified Modeling Language (UML) diagrams due to unstructured requirements, limited automated pipelines, and the lack of reliable evaluation methods. This study introduces a cohesive architecture that amalgamates requirement development, UML synthesis, and multimodal validation. First, LLaMA-3.2-1B-Instruct was utilized to generate user-focused requirements. Then, DeepSeek-R1-Distill-Qwen-32B applies its reasoning skills to transform these requirements into PlantUML code. Using this dual-LLM pipeline, we constructed a synthetic dataset of 11,997 UML diagrams spanning six major diagram families. Rendering analysis showed that 89.5% of the generated diagrams compile correctly, while… More >

  • Open Access

    ARTICLE

    A Hybrid Approach to Software Testing Efficiency: Stacked Ensembles and Deep Q-Learning for Test Case Prioritization and Ranking

    Anis Zarrad1, Thomas Armstrong2, Jaber Jemai3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072768 - 12 January 2026

    Abstract Test case prioritization and ranking play a crucial role in software testing by improving fault detection efficiency and ensuring software reliability. While prioritization selects the most relevant test cases for optimal coverage, ranking further refines their execution order to detect critical faults earlier. This study investigates machine learning techniques to enhance both prioritization and ranking, contributing to more effective and efficient testing processes. We first employ advanced feature engineering alongside ensemble models, including Gradient Boosted, Support Vector Machines, Random Forests, and Naive Bayes classifiers to optimize test case prioritization, achieving an accuracy score of 0.98847More >

  • Open Access

    ARTICLE

    Building Regulatory Confidence with Human-in-the-Loop AI in Paperless GMP Validation

    Manaliben Amin*

    Journal on Artificial Intelligence, Vol.8, pp. 1-18, 2026, DOI:10.32604/jai.2026.073895 - 07 January 2026

    Abstract Artificial intelligence (AI) is steadily making its way into pharmaceutical validation, where it promises faster documentation, smarter testing strategies, and better handling of deviations. These gains are attractive, but in a regulated environment speed is never enough. Regulators want assurance that every system is reliable, that decisions are explainable, and that human accountability remains central. This paper sets out a Human-in-the-Loop (HITL) AI approach for Computer System Validation (CSV) and Computer Software Assurance (CSA). It relies on explainable AI (XAI) tools but keeps structured human review in place, so automation can be used without creating… More >

  • Open Access

    ARTICLE

    Individual Software Expertise Formalization and Assessment from Project Management Tool Databases

    Traian-Radu Ploscă1,*, Alexandru-Mihai Pescaru2, Bianca-Valeria Rus1, Daniel-Ioan Curiac1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.069707 - 10 November 2025

    Abstract Objective expertise evaluation of individuals, as a prerequisite stage for team formation, has been a long-term desideratum in large software development companies. With the rapid advancements in machine learning methods, based on reliable existing data stored in project management tools’ datasets, automating this evaluation process becomes a natural step forward. In this context, our approach focuses on quantifying software developer expertise by using metadata from the task-tracking systems. For this, we mathematically formalize two categories of expertise: technology-specific expertise, which denotes the skills required for a particular technology, and general expertise, which encapsulates overall knowledge More >

  • Open Access

    ARTICLE

    Compatible Remediation for Vulnerabilities in the Presence and Absence of Security Patches

    Xiaohu Song1, Zhiliang Zhu2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068930 - 10 November 2025

    Abstract Vulnerabilities are a known problem in modern Open Source Software (OSS). Most developers often rely on third-party libraries to accelerate feature implementation. However, these libraries may contain vulnerabilities that attackers can exploit to propagate malicious code, posing security risks to dependent projects. Existing research addresses these challenges through Software Composition Analysis (SCA) for vulnerability detection and remediation. Nevertheless, current solutions may introduce additional issues, such as incompatibilities, dependency conflicts, and additional vulnerabilities. To address this, we propose Vulnerability Scan and Protection (), a robust solution for detection and remediation vulnerabilities in Java projects. Specifically, builds… More >

  • Open Access

    ARTICLE

    A New Dataset for Network Flooding Attacks in SDN-Based IoT Environments

    Nader Karmous1, Wadii Jlassi1, Mohamed Ould-Elhassen Aoueileyine1, Imen Filali2,*, Ridha Bouallegue1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4363-4393, 2025, DOI:10.32604/cmes.2025.074178 - 23 December 2025

    Abstract This paper introduces a robust Distributed Denial-of-Service attack detection framework tailored for Software-Defined Networking based Internet of Things environments, built upon a novel, synthetic multi-vector dataset generated in a Mininet-Ryu testbed using real-time flow-based labeling. The proposed model is based on the XGBoost algorithm, optimized with Principal Component Analysis for dimensionality reduction, utilizing lightweight flow-level features extracted from OpenFlow statistics to classify attacks across critical IoT protocols including TCP, UDP, HTTP, MQTT, and CoAP. The model employs lightweight flow-level features extracted from OpenFlow statistics to ensure low computational overhead and fast processing. Performance was rigorously… More >

  • Open Access

    ARTICLE

    AI-Driven SDN and Blockchain-Based Routing Framework for Scalable and Trustworthy AIoT Networks

    Mekhled Alharbi1,*, Khalid Haseeb2, Mamoona Humayun3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2601-2616, 2025, DOI:10.32604/cmes.2025.073039 - 26 November 2025

    Abstract Emerging technologies and the Internet of Things (IoT) are integrating for the growth and development of heterogeneous networks. These systems are providing real-time devices to end users to deliver dynamic services and improve human lives. Most existing approaches have been proposed to improve energy efficiency and ensure reliable routing; however, trustworthiness and network scalability remain significant research challenges. In this research work, we introduce an AI-enabled Software-Defined Network (SDN)- driven framework to provide secure communication, trusted behavior, and effective route maintenance. By considering multiple parameters in the forwarder selection process, the proposed framework enhances network More >

  • Open Access

    ARTICLE

    Traffic Profiling and Secure Virtualized Data Handling of 5G Networks via MinIO Storage

    Khawaja Tahir Mehmood1,*, Muhammad Majid Hussain2

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5643-5670, 2025, DOI:10.32604/cmc.2025.068404 - 23 October 2025

    Abstract In the modern era of 5th generation (5G) networks, the data generated by User Equipments (UE) has increased significantly, with data file sizes varying from modest sensor logs to enormous multimedia files. In modern telecommunications networks, the need for high-end security and efficient management of these large data files is a great challenge for network designers. The proposed model provides the efficient real-time virtual data storage of UE data files (light and heavy) using an object storage system MinIO having inbuilt Software Development Kits (SDKs) that are compatible with Amazon (S3) Application Program Interface (API)… More >

  • Open Access

    REVIEW

    Static Analysis Techniques for Secure Software: A Systematic Review

    Brian Mweu1,*, John Ndia2

    Journal of Cyber Security, Vol.7, pp. 417-437, 2025, DOI:10.32604/jcs.2025.071765 - 10 October 2025

    Abstract Static analysis methods are crucial in developing secure software, as they allow for the early identification of vulnerabilities before the software is executed. This systematic review follows Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines to assess static analysis techniques for software security enhancement. We systematically searched IEEE Xplore, Association for Computing Machinery (ACM) Digital Library, SpringerLink, and ScienceDirect for journal articles published between 2017 and 2025. The review examines hybrid analyses and machine learning integration to enhance vulnerability detection accuracy. Static analysis tools enable early fault detection but face persistent challenges. More >

  • Open Access

    ARTICLE

    Redefining the Programmer: Human-AI Collaboration, LLMs, and Security in Modern Software Engineering

    Elyson De La Cruz*, Hanh Le, Karthik Meduri, Geeta Sandeep Nadella*, Hari Gonaygunta

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3569-3582, 2025, DOI:10.32604/cmc.2025.068137 - 23 September 2025

    Abstract The rapid integration of artificial intelligence (AI) into software development, driven by large language models (LLMs), is reshaping the role of programmers from traditional coders into strategic collaborators within Industry 4.0 ecosystems. This qualitative study employs a hermeneutic phenomenological approach to explore the lived experiences of Information Technology (IT) professionals as they navigate a dynamic technological landscape marked by intelligent automation, shifting professional identities, and emerging ethical concerns. Findings indicate that developers are actively adapting to AI-augmented environments by engaging in continuous upskilling, prompt engineering, interdisciplinary collaboration, and heightened ethical awareness. However, participants also voiced… More >

Displaying 1-10 on page 1 of 291. Per Page